Acknowledgement
이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2020R1G1A1102683). 본 연구는 삼성미래기술육성센터의 지원을 받아 수행하였음(No. SRFC-TC1603-52).
References
- Korea International Trade Association [Internet], https://stat.kita.net.
- B. M. Lee, H. J. Jeong, and K. S. Park, "An influence of the fourth industrial revolution on international trade and countermeasure strategies to promote export in Korea," Korea Trade Review, Vol.42, No.3, pp.1-24, 2017.
- S. H. Nam, "Comparison of long-term forecasting performance of export growth rate using time series analysis models and machine learning analysis," Korea Trade Review, Vol.46, No.6, pp.191-209, 2021. https://doi.org/10.22659/KTRA.2021.46.6.191
- The 9th Public Data Utilization BI Contest [Internet], http://www.datacontest.kr (retrieved 20210926)
- S. Weisberg, "Applied linear regression," John Wiley & Sons, pp.47, 2005.
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, Vol.521, No.7553, pp.436-444, 2015. https://doi.org/10.1038/nature14539
- A. Keck, A. Raubold, and A. Truppia. "Forecasting international trade: A time series approach," OECD Journal: Journal of Business Cycle Measurement and Analysis, Vol.2009, No.2, pp.157-176, 2010.
- A. W. Veenstra and H. E. Haralambides. "Multivariate autoregressive models for forecasting seaborne trade flows," Transportation Research Part E: Logistics and Transportation Review, Vol.37, No.4, pp.311-319, 2001. https://doi.org/10.1016/S1366-5545(00)00020-X
- E. S. Silva and H. Hassani. "On the use of singular spectrum analysis for forecasting US trade before, during and after the 2008 recession," International Economics, Vol.141, pp.34-49, 2015. https://doi.org/10.1016/j.inteco.2014.11.003
- M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, "A complete ensemble empirical mode decomposition with adaptive noise," 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2011.
- H. Lu, X. Ma, K. Huang, and M. Azimi, "Carbon trading volume and price forecasting in China using multiple machine learning models," Journal of Cleaner Production, Vol.249, pp.119386, 2020. https://doi.org/10.1016/j.jclepro.2019.119386
- S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," International Conference on Machine Learning, PMLR, 2015.
- S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, Vol.9, No.8, pp.1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
- Analytics Vidhya, "Feature Scaling for Machine Learning: Understanding the Difference Between Normalization vs. Standardization," [Internet], https://www.analyticsvidhya.com/blog/2020/04/feature-scaling-machine-learning-normalization-standardization/(retrieved 20200403).
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research, Vol.15, No.1, pp.1929-1958, 2014.
- R. Genuer, J. M. Poggi, and C. Tuleau-Malot. "Variable selection using random forests," Pattern Recognition Letters, Vol.31, No.14, pp.2225-2236, 2010. https://doi.org/10.1016/j.patrec.2010.03.014
- Christoph Molnar, "Permutation feature importance," [Internet], https://christophm.github.io/interpretable-ml-book/feature-importance.html (retrieved 20220217).
- K. Kira and L. A. Rendell, "A practical approach to feature selection," Machine Learning Proceedings 1992, Morgan Kaufmann, pp.249-256, 1992.
- J. W. Tukey, "Exploratory data analysis," Addison-Wesley. ISBN 978-0-201-07616-5. OCLC 3058187, 1977.
- A. Krizhevsky, I. Sutskever, and G. E. Hinton. "Imagenet classification with deep convolutional neural networks," Communications of the ACM, Vol.60, No.6, pp.84-90, 2017. https://doi.org/10.1145/3065386
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, Vol.86, No.11, pp.2278-2324, 1998. https://doi.org/10.1109/5.726791
- A. Vaswani et al., "Attention is all you need," Advances in Neural Information Processing Systems, 2017.