• Title/Summary/Keyword: computer based training

Search Result 1,335, Processing Time 0.045 seconds

An Improved Deep Learning Method for Animal Images (동물 이미지를 위한 향상된 딥러닝 학습)

  • Wang, Guangxing;Shin, Seong-Yoon;Shin, Kwang-Weong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.123-124
    • /
    • 2019
  • This paper proposes an improved deep learning method based on small data sets for animal image classification. Firstly, we use a CNN to build a training model for small data sets, and use data augmentation to expand the data samples of the training set. Secondly, using the pre-trained network on large-scale datasets, such as VGG16, the bottleneck features in the small dataset are extracted and to be stored in two NumPy files as new training datasets and test datasets. Finally, training a fully connected network with the new datasets. In this paper, we use Kaggle famous Dogs vs Cats dataset as the experimental dataset, which is a two-category classification dataset.

  • PDF

Exploring the Feasibility of Neural Networks for Criminal Propensity Detection through Facial Features Analysis

  • Amal Alshahrani;Sumayyah Albarakati;Reyouf Wasil;Hanan Farouquee;Maryam Alobthani;Someah Al-Qarni
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.11-20
    • /
    • 2024
  • While artificial neural networks are adept at identifying patterns, they can struggle to distinguish between actual correlations and false associations between extracted facial features and criminal behavior within the training data. These associations may not indicate causal connections. Socioeconomic factors, ethnicity, or even chance occurrences in the data can influence both facial features and criminal activity. Consequently, the artificial neural network might identify linked features without understanding the underlying cause. This raises concerns about incorrect linkages and potential misclassification of individuals based on features unrelated to criminal tendencies. To address this challenge, we propose a novel region-based training approach for artificial neural networks focused on criminal propensity detection. Instead of solely relying on overall facial recognition, the network would systematically analyze each facial feature in isolation. This fine-grained approach would enable the network to identify which specific features hold the strongest correlations with criminal activity within the training data. By focusing on these key features, the network can be optimized for more accurate and reliable criminal propensity prediction. This study examines the effectiveness of various algorithms for criminal propensity classification. We evaluate YOLO versions YOLOv5 and YOLOv8 alongside VGG-16. Our findings indicate that YOLO achieved the highest accuracy 0.93 in classifying criminal and non-criminal facial features. While these results are promising, we acknowledge the need for further research on bias and misclassification in criminal justice applications

Personal Training Suggestion System based Hybrid App (하이브리드 앱 기반의 퍼스널 트레이닝 제안 시스템)

  • Kye, Min-Seok;Lee, Hye-Soo;Park, Sung-Hyun;Kim, Dong-Ok;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.665-667
    • /
    • 2014
  • Wellness is IT fused with the user manage and maintain the health of a service can help you. If you are using an existing Fitness Center to yourself by choosing appliances that fit with the risk of injury in order to learn how the efficient movement had existed for a long time was needed. To resolve, use the personal training but more expensive cost of people's problems, and shown again in the habit of exercising alone will have difficulty. This paper provides a variety of smart phones based on a hybrid app with compatibility with the platform and personalized training market system. Users of the Fitness Center is built into smart phones in the history of their movement sensors or transmits to the Web by typing directly. This is based on exercise programs tailored to users via the training market. Personal training marketplace has a variety of users, check the history of this movement he can recommend an exercise program for themselves can be applied by selecting the. This provides users with the right exercise program can do long-term exercise habits can be proactive and goal setting.

  • PDF

Voting and Ensemble Schemes Based on CNN Models for Photo-Based Gender Prediction

  • Jhang, Kyoungson
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.809-819
    • /
    • 2020
  • Gender prediction accuracy increases as convolutional neural network (CNN) architecture evolves. This paper compares voting and ensemble schemes to utilize the already trained five CNN models to further improve gender prediction accuracy. The majority voting usually requires odd-numbered models while the proposed softmax-based voting can utilize any number of models to improve accuracy. The ensemble of CNN models combined with one more fully-connected layer requires further tuning or training of the models combined. With experiments, it is observed that the voting or ensemble of CNN models leads to further improvement of gender prediction accuracy and that especially softmax-based voters always show better gender prediction accuracy than majority voters. Also, compared with softmax-based voters, ensemble models show a slightly better or similar accuracy with added training of the combined CNN models. Softmax-based voting can be a fast and efficient way to get better accuracy without further training since the selection of the top accuracy models among available CNN pre-trained models usually leads to similar accuracy to that of the corresponding ensemble models.

Re-engineering Adult Education Programme-an Online Learning Curricular Perspective

  • Mathai, K.J.;Karaulia, D.S.
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.4
    • /
    • pp.685-697
    • /
    • 2003
  • The Web based multimedia programmes/courses are becoming widely available in recent years. Most of these courses focus on Behaviorist way of learning, which does not promote deep learning in any way. For Adults this approach further incapacitated, as it does not satisfy Andragogical needs. The search for Constructivist way of learning through the web applied to Indian conditions led to need for developing a curriculum development approach that would promote construction of knowledge through web based collaboration. This paper attempts to reengineer existing curriculum development processes and lays out a framework of‘Problem Based Online Learning (PBOL)’curriculum design. In this context, entire curriculum development life cycle is evolved and explained. This is a part of doctoral work (Ph.D), which is in progress and being undertaken by K.James Mathai, and guided of Dr.D.S.Karaulia.

  • PDF

Effective of Collaborative Reflection based on SNS in Teacher Training (교사연수에서 SNS를 이용한 협력성찰활동의 효과)

  • Kim, Sanghong;Han, Seonkwan
    • Journal of The Korean Association of Information Education
    • /
    • v.19 no.3
    • /
    • pp.261-270
    • /
    • 2015
  • In this paper, a strategy of cooperation activities was conducted to analyze on the impact of what effect appears in teacher training. We classified with satisfaction, effectiveness and academic achievement as effects of teacher training. We were divided into three groups that are cooperative-reflection activity group using the SNS, self-reflection activity group and general training group. Depending on the type of reflection activity, we have one-way ANOVA analysis for the effectiveness of teacher training. By the results of the analysis, we found to have a positive impact that cooperative reflection activity group were more an academic achievement, satisfaction and effectiveness of training. Accordingly, we have found the SNS-based collaborative reflection activity is very effective in teacher training.

A Feature Selection Technique based on Distributional Differences

  • Kim, Sung-Dong
    • Journal of Information Processing Systems
    • /
    • v.2 no.1
    • /
    • pp.23-27
    • /
    • 2006
  • This paper presents a feature selection technique based on distributional differences for efficient machine learning. Initial training data consists of data including many features and a target value. We classified them into positive and negative data based on the target value. We then divided the range of the feature values into 10 intervals and calculated the distribution of the intervals in each positive and negative data. Then, we selected the features and the intervals of the features for which the distributional differences are over a certain threshold. Using the selected intervals and features, we could obtain the reduced training data. In the experiments, we will show that the reduced training data can reduce the training time of the neural network by about 40%, and we can obtain more profit on simulated stock trading using the trained functions as well.

Education Method for Programming through Physical Computing based on Analog Signaling of Arduino (아두이노 아날로그 신호 기반 피지컬 컴퓨팅을 통한 프로그래밍 교육 방법)

  • Hur, Kyeong;Sohn, Won-Sung
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1481-1490
    • /
    • 2019
  • Arduino makes it easy to connect objects and computers. As a result, programming learning using physical computing has been proposed as an effective alternative to SW training for beginners. In this paper, we propose an Arduino-based physical computing education method that can be applied to basic programming subjects. To this end, we propose a basic programming training method based on Arduino analog signals. Currently, physical computing courses focus on digital control when connecting input sensors and output devices in Arduino. However, the contents of programming education using analog signals of Arduino boards are insufficient. In this paper, we proposed and tested the teaching method used for programming education using low-cost materials used for Arduino analog signal-based computing.

The classified method for overlapping data

  • Kruatrachue, Boontee;Warunsin, Kulwarun;Siriboon, Kritawan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2037-2040
    • /
    • 2004
  • In this paper we introduce a new prototype based classifiers for overlapping data, where training pattern can be overlap on the feature space. The proposed classifier is based on the prototype from neural network classifier (NNC)[1] for overlap data. The method automatically chooses the initial center and two radiuses for each class. The center is used as a mean representative of training data for each class. The unclassified pattern is classified by measure distance from the class center. If the distance is in the lower (shorter radius) the unknown pattern has the high percentage of being in this class. If the distance is between the lower and upper (further radius), the pattern has the probability of being in this class or others. But if the distance is outside the upper, the pattern is not in this class. We borrow the words upper and lower from the rough set to represent the region of certainty [3]. The training algorithm to find number of cluster and their parameters (center, lower, upper) is presented. The clustering result is tested using patterns from Thai handwritten letter and the clustering result is very similar to human eyes clustering.

  • PDF

Development of a Competency Curriculum of Computer Aided Mechanical Department based on the National Occupational Standards (국가직업능력표준을 활용한 컴퓨터 응용기계설계과용 능력중심 교육과정 개발)

  • Ryu Hyeong-Ryong;Pyoun Young-Sik;Gu Ja-Gil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • According to the trend that knowledge information and technology become resource of international competitiveness in industrial development, some countries of world are improving national human resource development system through National Occupational Standards, which is inseparable link system of work-education and training-qualification. National Occupational Standards have been developed fur over all industries by Human Resource Development Korea since 2002. Purpose of this study is to develop a competency based curriculum of computer mechanical design department in junior college or polytechnic college by systematic curriculum and instructional development model based on Korean National Occupational Standards. A guide line how to develop education and training program is presented also.

  • PDF