Journal of the Korea Institute of Information and Communication Engineering
/
v.25
no.3
/
pp.490-493
/
2021
This paper proposes an embedded system that detects mask and face recognition based on a microprocessor instead of Nvidia Jetson Board what is popular development kit. We use a class of efficient models called Mobilenets for mobile and embedded vision applications. MobileNets are based on a streamlined architechture that uses depthwise separable convolutions to build light weight deep neural networks. The device used a Maix development board with CNN hardware acceleration function, and the training model used MobileNet_V2 based SSD(Single Shot Multibox Detector) optimized for mobile devices. To make training model, 7553 face data from Kaggle are used. As a result of test dataset, the AUC (Area Under The Curve) value is as high as 0.98.
Hippocampus is an important part of brain which is related with early memory storage and spatial navigation. By observing the anatomy of hippocampus, some brain diseases effecting human memory (e.g. Alzheimer, schizophrenia, etc.) can be diagnosed and predicted earlier. The diagnosis process is highly related with hippocampus segmentation. In this paper, hippocampus segmentation using Active Shape Model, which not only works based on image intensity, but also by using prior knowledge of hippocampus shape and intensity from the training images, is proposed. The results show that ASM is applicable in segmenting hippocampus from whole brain MR image. It also shows that adding more images in the training set results in better accuracy of hippocampus segmentation.
Journal of the Korea Society of Computer and Information
/
v.22
no.7
/
pp.31-37
/
2017
There are lots of combined battlefield elements which complete the war. It looks problematic when collecting and analyzing these elements and then predicting the situation of war. Commander's experience and military power assessment have widely been used to come up with these problems, then simulated combat training program recently supplements the war-game models through recording real-time simulated combat data. Nevertheless, there are challenges to assess winning factors of combat. In this paper, we characterize the combat element (ce) by clustering simulated combat data, and then suggest multi-layered artificial neural network (ANN) model, which can comprehend non-linear, cross-connected effects among ces to assess mission completion degree (MCD). Through our ANN model, we have the chance of analyzing and predicting winning factors. Experimental results show that our ANN model can explain MCDs through networking ces which overperform multiple linear regression model. Moreover, sensitivity analysis of ces will be the basis of predicting combat situation.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.6
/
pp.2709-2729
/
2016
Representation based classification, kernel method and sparse representation have received much attention in the field of face recognition. In this paper, we proposed an improved kernel principal component analysis method based on sparse representation to improve the accuracy and robustness for face recognition. First, the distances between the test sample and all training samples in kernel space are estimated based on collaborative representation. Second, S training samples with the smallest distances are selected, and Kernel Principal Component Analysis (KPCA) is used to extract the features that are exploited for classification. The proposed method implements the sparse representation under ℓ2 regularization and performs feature extraction twice to improve the robustness. Also, we investigate the relationship between the accuracy and the sparseness coefficient, the relationship between the accuracy and the dimensionality respectively. The comparative experiments are conducted on the ORL, the GT and the UMIST face database. The experimental results show that the proposed method is more effective and robust than several state-of-the-art methods including Sparse Representation based Classification (SRC), Collaborative Representation based Classification (CRC), KCRC and Two Phase Test samples Sparse Representation (TPTSR).
Kim, Jun Seok;Kang, Hyunjae;Kim, Jinsoo;Kim, Huy Kang
Journal of the Korea Society of Computer and Information
/
v.23
no.11
/
pp.75-84
/
2018
Social engineering attack means to get information of Social engineering attack means to get information of opponent without technical attack or to induce opponent to provide information directly. In particular, social engineering does not approach opponents through technical attacks, so it is difficult to prevent all attacks with high-tech security equipment. Each company plans employee education and social training as a countermeasure to prevent social engineering. However, it is difficult for a security officer to obtain a practical education(training) effect, and it is also difficult to measure it visually. Therefore, to measure the social engineering threat, we use the results of social engineering training result to calculate the risk by system asset and propose a attack graph based probability. The security officer uses the results of social engineering training to analyze the security threats by asset and suggests a framework for quick security response. Through the framework presented in this paper, we measure the qualitative social engineering threats, collect system asset information, and calculate the asset risk to generate probability based attack graphs. As a result, the security officer can graphically monitor the degree of vulnerability of the asset's authority system, asset information and preferences along with social engineering training results. It aims to make it practical for companies to utilize as a key indicator for establishing a systematic security strategy in the enterprise.
The Journal of Korean Association of Computer Education
/
v.20
no.4
/
pp.37-46
/
2017
Since 2018, the level of informatics education that is mandatory in junior high schools depends on the subject matter expertise of Informatics & Computer teachers. The purpose of this study is to analyze whether secondary teacher training institutes provide curriculum that guarantees the subjectivity of Informatics & Computer teachers. In order to achieve the goal, this study first compares curriculum courses for educating Informatics & Computer teachers of Korea secondary teacher training institutes with subjects based on the content system of J07-CS, the informatics education in Japan. Second, we compare the basic subjects offered by the Ministry of Education with the vocational subjects. Third, we analyzed the basic subjects of each university. As a result of the study, the number of informatics-related courses opened by Korean secondary teacher training institutions was insufficient compared to the number of subjects in J07-CS. Even though the standard of comparison was limited to basic subjects, the content elements were insufficient, and the ratio of the basic subjects of each university was low. In order to achieve the goal of informatics education from 2018, it is urgent to improve the curriculum of secondary education teachers.
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.269-277
/
2024
This study aims to explore the key factors for the systematic development and activation of a MyData-based platform for SW·AI education and training programs recently initiated by the government. To achieve this, a research model based on the Value-based Adoption Model (VAM) was established, and a survey was conducted with 178 participants who had experience in SW·AI education and training programs. The research model was validated using confirmatory factor analysis and Partial Least Squares Structural Equation Modeling (PLS-SEM). The main findings of the study are as follows: First, transparency and self-determination significantly influenced perceived benefits, while technical effort and security significantly influenced perceived risks. Second, perceived benefits positively affected the intention to use the platform, whereas perceived risks did not show a significant impact. Based on these results, this study suggests implications for the systematic development and activation of a MyData-based platform in the field of SW·AI education and training.
This research examines the importance of IT training/education, present situation and possible suggestion for the successful training/education. The research method adopts a comparative analytical approach based on questionnaire survey responses from three work groups - managers, employees, and union representatives - drawn from five sample Korean banks. The evidence indicates that all three groups agree that IT improves banking efficiency and reduces job repetitiveness, but their job satisfaction level with IT-based work is surprisingly very low. The main reasons are mainly lack of training/education and poor user manuals. Also the research shows that most respondents would like to get further training/education to more adequately fit them for their jobs. Those from banks which invested in continuing training/education revealed more positive work attitudes and higher job satisfaction.
Recently, image-based object detection has made great progress with the introduction of Convolutional Neural Network (CNN). Many trials such as Region-based CNN, Fast R-CNN, and Faster R-CNN, have been proposed for achieving better performance in object detection. YOLO has showed the best performance under consideration of both accuracy and computational complexity. However, these data-driven detection methods including YOLO have the fundamental problem is that they can not guarantee the good performance without a large number of training database. In this paper, we propose a data sampling method using CycleGAN to solve this problem, which can convert styles while retaining the characteristics of a given input image. We will generate the insufficient data samples for training more robust object detection without efforts of collecting more database. We make extensive experimental results using the day-time and night-time road images and we validate the proposed method can improve the object detection accuracy of the night-time without training night-time object databases, because we converts the day-time training images into the synthesized night-time images and we train the detection model with the real day-time images and the synthesized night-time images.
Purpose The purpose of this study is to investigate the factors that affect the user satisfaction and continuous use intention of the improved ATCIS in the Korean Army. Design/methodology/approach Based on the various theories in relation to IT continuance, user satisfaction was identified as the main factor with regard to the continuous use intention of the improved ATCIS. In addition, computer self-efficacy, education-training, and system quality were hypothesized as antecedent variables to user satisfaction, and information security stress was set as a moderating variable for these relationships. Findings Survey results show that computer self-efficacy, education and training, and system quality had a positive effect on user satisfaction, and information security stress was found to moderate these relationships. The effects of computer self-efficacy and education-training on user satisfaction were higher in the group with low information security stress. However, the relationship between system quality and user satisfaction was higher in the group with high information security stress. User satisfaction is found to have a positive effect on the continuous use intention even with habit considered as a control variable.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.