• Title/Summary/Keyword: computer based estimation

Search Result 1,366, Processing Time 0.027 seconds

Maximum mutual information estimation linear spectral transform based adaptation (Maximum mutual information estimation을 이용한 linear spectral transformation 기반의 adaptation)

  • Yoo, Bong-Soo;Kim, Dong-Hyun;Yook, Dong-Suk
    • Proceedings of the KSPS conference
    • /
    • 2005.04a
    • /
    • pp.53-56
    • /
    • 2005
  • In this paper, we propose a transformation based robust adaptation technique that uses the maximum mutual information(MMI) estimation for the objective function and the linear spectral transformation(LST) for adaptation. LST is an adaptation method that deals with environmental noises in the linear spectral domain, so that a small number of parameters can be used for fast adaptation. The proposed technique is called MMI-LST, and evaluated on TIMIT and FFMTIMIT corpora to show that it is advantageous when only a small amount of adaptation speech is used.

  • PDF

An Extended Version of the CPT-based Estimation for Missing Values in Nominal Attributes

  • Ko, Song;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.253-258
    • /
    • 2010
  • The causal network represents the knowledge related to the dependency relationship between all attributes. If the causal network is available, the dependency relationship can be employed to estimate the missing values for improving the estimation performance. However, the previous method had a limitation in that it did not consider the bidirectional characteristic of the causal network. The proposed method considers the bidirectional characteristic by applying prior and posterior conditions, so that it outperforms the previous method.

An Estimation of The Unknown Theory Constants Using A Simulation Predictor

  • 박정수
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 1993
  • A statistical method is described for estimation of the unknown constants in a theory using both of the computer simulation data and the real experimental data, The best linear unbiased predictor based on a spatial linear model is fitted from the computer simulation data alone. Then nonlinear least squares estimation method is applied to the real experimental data using the fitted prediction model as if it were the true simulation model. An application to the computational nuclear fusion devices is presented, where the nonlinear least squares estimates of four transport coefficients of the theoretical nuclear fusion model are obtained.

  • PDF

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

Parameter Estimation of Three-Phase Induction Motor by Using Genetic Algorithm

  • Jangjit, Seesak;Laohachai, Panthep
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.3
    • /
    • pp.360-364
    • /
    • 2009
  • This paper suggests the techniques in determining the values of the steady-state equivalent circuit parameters of a three-phase induction machine using genetic algorithm. The parameter estimation procedure is based on the steady-state phase current versus slip and input power versus slip characteristics. The propose estimation algorithm is of non-linear kind based on selection in genetic algorithm. The machine parameters are obtained as the solution of a minimization of objective function by genetic algorithm. Simulation shows good performance of the propose procedures.

RANSAC-based Or thogonal Vanishing Point Estimation in the Equirectangular Images

  • Oh, Seon Ho;Jung, Soon Ki
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.12
    • /
    • pp.1430-1441
    • /
    • 2012
  • In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.

A New Fast Motion Estimation Algorithm Based on Block Sum Pyramid Algorithm

  • Jung, Soo-Mok
    • Journal of the Korea Computer Industry Society
    • /
    • v.5 no.1
    • /
    • pp.147-156
    • /
    • 2004
  • In this paper, a new fast motion estimation algorithm which is based on the Block Sum Pyramid Algorithm(BSPA) is presented. The Spiral Diamond Mesh Search scheme and Partial Distortion Elimination scheme of Efficient Multi-level Successive Elimination Algorithm were improved and then the improved schemes were applied to the BSPA. The motion estimation accuracy of the proposed algorithm is nearly 100% and the cost of Block Sum Pyramid Algorithm was reduced in the proposed algorithm. The efficiency of the proposed algorithm was verified by experimental results.

  • PDF

A Study on High Resolution Ranging Algorithm for The UWB Indoor Channel

  • Lee, Chong-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.4
    • /
    • pp.96-103
    • /
    • 2007
  • In this paper, we present a novel and numerically efficient algorithm for high resolution TOA(Time Of Arrival) estimation under indoor radio propagation channels. The proposed algorithm is not dependent on the structure of receivers, i.e, it can be used with either coherent or non-coherent receivers. The TOA estimation algorithm is based on a high resolution frequency estimation algorithm of Minimum-norm. The efficiency of the proposed algorithm relies on numerical analysis techniques in computing signal or noise subspaces. The algorithm is based on the two step procedures, one for transforming input data to frequency domain data and the other for estimating the unknown TOA using the proposed efficient algorithm. The efficiency in number of operations over other algorithms is presented. The performance of the proposed algorithm is investigated by means of computer simulations.. Throughout the analytic and computer simulation results, we show that the proposed algorithm exhibits superior performance in estimating TOA estimation with limited computational cost.

Massive MIMO Channel Estimation Algorithm Based on Weighted Compressed Sensing

  • Lv, Zhiguo;Wang, Weijing
    • Journal of Information Processing Systems
    • /
    • v.17 no.6
    • /
    • pp.1083-1096
    • /
    • 2021
  • Compressed sensing-based matching pursuit algorithms can estimate the sparse channel of massive multiple input multiple-output systems with short pilot sequences. Although they have the advantages of low computational complexity and low pilot overhead, their accuracy remains insufficient. Simply multiplying the weight value and the estimated channel obtained in different iterations can only improve the accuracy of channel estimation under conditions of low signal-to-noise ratio (SNR), whereas it degrades accuracy under conditions of high SNR. To address this issue, an improved weighted matching pursuit algorithm is proposed, which obtains a suitable weight value uop by training the channel data. The step of the weight value increasing with successive iterations is calculated according to the sparsity of the channel and uop. Adjusting the weight value adaptively over the iterations can further improve the accuracy of estimation. The results of simulations conducted to evaluate the proposed algorithm show that it exhibits improved performance in terms of accuracy compared to previous methods under conditions of both high and low SNR.

Indoor Temperature Estimation System for Reduction of Building Energy Consumption (건물 에너지 절감을 위한 실내 온도 추정 시스템)

  • Kim, Jeong-Hoon;You, Sung Hyun;Lee, Sang Su;Kim, Kwan-Soo;Ahn, Choon-Ki
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.885-888
    • /
    • 2017
  • In this paper, a new strategy for estimating building temperature based on the modified resistance capacitance (R - C) network thermal dynamic model is proposed. The proposed method gives accurate indoor temperature estimation using minimum variance finite impulse response filter. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.