• 제목/요약/키워드: computed tomography image

검색결과 966건 처리시간 0.021초

Preliminary study of artificial intelligence-based fuel-rod pattern analysis of low-quality tomographic image of fuel assembly

  • Seong, Saerom;Choi, Sehwan;Ahn, Jae Joon;Choi, Hyung-joo;Chung, Yong Hyun;You, Sei Hwan;Yeom, Yeon Soo;Choi, Hyun Joon;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3943-3948
    • /
    • 2022
  • Single-photon emission computed tomography is one of the reliable pin-by-pin verification techniques for spent-fuel assemblies. One of the challenges with this technique is to increase the total fuel assembly verification speed while maintaining high verification accuracy. The aim of the present study, therefore, was to develop an artificial intelligence (AI) algorithm-based tomographic image analysis technique for partial-defect verification of fuel assemblies. With the Monte Carlo (MC) simulation technique, a tomographic image dataset consisting of 511 fuel-rod patterns of a 3 × 3 fuel assembly was generated, and with these images, the VGG16, GoogLeNet, and ResNet models were trained. According to an evaluation of these models for different training dataset sizes, the ResNet model showed 100% pattern estimation accuracy. And, based on the different tomographic image qualities, all of the models showed almost 100% pattern estimation accuracy, even for low-quality images with unrecognizable fuel patterns. This study verified that an AI model can be effectively employed for accurate and fast partial-defect verification of fuel assemblies.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

척추경 나사못 고정술 시행 후 3차원 재구성CT영상의 유용성 평가 (Evaluation on usefulness of three dimensional reconstructive computed tomography images after pedicle screws fixation)

  • 김현주;장현철;조재환
    • 디지털콘텐츠학회 논문지
    • /
    • 제11권4호
    • /
    • pp.553-559
    • /
    • 2010
  • 본 연구는 척추경 나사못 고정술을 시행한 환자를 대상으로 고정술 전, 후 전산화 단층촬영 영상의 원 자료(raw data)를 이용하여 다양한 재구성 기법을 적용하여 나사못의 정확한 위치파악과 수술의 정확도 등 다양한 정보를 알아보고자 하였다. 임상에서 주로 이용 하는 재구성기법인 다평면재구성(MPR), 최대강도투영(MIP), 체적묘사기법(VRT)과 변형 제적묘사기법(modifying VRT)을 적용하여 영상데이터를 각 각 정량적 방법과 정성적 방법으로 비교 분석하였다. 재구성 영상의 분석 및 평가결과 전산화 단층촬영 영상재구성 기법 중 척추경 나사못 고정술 후 나사의 정확한 위치파악과 금속에 의한 인공음영을 최소화 시키는데 가장 유용한 재구성 기법으로는 변형 체적묘사기법으로 사료된다.

C-arm CT의 필수 성능평가 기준 마련을 위한 연구 (A Study on Establishment of Essential Performance Evaluation Criteria for C-arm Computed Tomography)

  • 김은혜;박혜민;김정민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제45권2호
    • /
    • pp.127-134
    • /
    • 2022
  • In order to overcome the image quality limitations of the conventional C-arm, a flat panel detector (FPD) is used to enhance spatial resolution, detective quantum efficiency, frame rate, and dynamic range. Three-dimensional (3D) visualized information can be obtained from C-arm computed tomography (CT) equipped with an FPD, which can reduce patient discomfort and provide various medical information to health care providers by conducting procedures in the interventional procedure room without moving the patient to the CT scan room. Unlike a conventional C-arm device, a C-arm CT requires different basic safety and essential performance evaluation criteria; therefore, in this study, basic safety and essential performance evaluation criteria to protect patients, medical staff, and radiologists were derived based on International Electrotechnical Commission (IEC) standards, the Ministry of Food and Drug Safety (MFDS) standards in Korea, and the rules on the installation and operation of special medical equipment in Korea. As a result of the study, six basic safety evaluation criteria related to electrical and mechanical radiation safety (leakage current, collision protection, emergency stopping device, overheating, recovery management, and ingress of water or particulate matter into medical electrical (ME) equipment and ME systems: footswitches) and 14 essential performance evaluation criteria (accuracy of tube voltage, accuracy of tube current, accuracy of loading time, accuracy of current time product, reproducibility of radiation output, linearity and consistency in radiography, half layer value in X-ray equipment, focal size and collimator, relationship between X-ray field and image reception area, consistency of light irradiation versus X-ray irradiation, performance of the mechanical device, focal spot to skin distance accuracy, image quality evaluation, and technical characteristic of cone-beam computed tomography) were selected for a total of 20 criteria.

Evaluation of the postoperative maxillary sinus with computed tomography

  • Kim Hee-Kyung;Heo Min-Suk;Lee Sam-Sun;Choi Hyun-Bae;Choi Soon-Chul;Park Tae-Won
    • Imaging Science in Dentistry
    • /
    • 제32권4호
    • /
    • pp.195-200
    • /
    • 2002
  • Purpose: To evaluate the computed tomographic appearances of post-operative maxillary sinuses. Materials and Methods: 33 asymptomatic cases of post-operative maxillary sinus without evidence of any pathologic changes and clinical symptoms were selected. CT images were classified as opacification, soft tissue shadow, anterior wall depression, naso-antral communication, and compartmentalization. The relationships between the CT image and the age of patients at the time of operatation, and between the CT image and the duration of time elapsed since the surgical procedure were evaluated. Results: The most commonly presented radiological characteristics that occurred after the Caldwell-Luc procedure were opacification and soft tissue shadow. Anterior wall depression and naso-antral communication were radiographic indications that a Caldwell-Luc operation had been carried out. The age of patients when they had been first operated on, and the duration between the surgical procedure and the time of evaluation had no effect on the CT appearances of normal changes. In cases involving a longer time interval between the antral surgery and evaluation, the anterior wall depression with bony healing was more commonly observed than soft tissue healing. Conclusion: The radiographic information regarding the normal healing state using computed tomography can distinguish post-operative changes from inflammatory and cystic disease in patients who have undergone a Caldwell-Luc type of radical maxillary antrostomy.

  • PDF

CT를 이용한 알루미늄 반응고 성형품의 미세 결함 측정 (Measurements of Micro-Defects in the Aluminum Thixoformed Part using Computed Tomography(CT) Technology)

  • 이상용;김찬현
    • 소성∙가공
    • /
    • 제18권5호
    • /
    • pp.422-427
    • /
    • 2009
  • Computed tomography(CT) has been applied to measure micro-defects in the aluminum knuckle parts manufactured by the thixoforming process. 6061 aluminum alloys were used to form knuckle samples in the semi-solid temperature after the SIMA processing of billets. Tensile specimens were cut from the different locations in a thixoformed knuckle. The size and the distribution of forming defects in tensile specimens were analyzed using CT scanning and image analysis technology before tensile tests. It has been qualitatively shown that the stress-strain curves were significantly affected by the size and the distribution of forming defects although the defect sizes lie in the range of micro-meters.

전산화 단층 촬영(Computed tomography, CT) 이미지에 대한 EfficientNet 기반 두개내출혈 진단 및 가시화 모델 개발 (Diagnosis and Visualization of Intracranial Hemorrhage on Computed Tomography Images Using EfficientNet-based Model)

  • 윤예빈;김민건;김지호;강봉근;김구태
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권4호
    • /
    • pp.150-158
    • /
    • 2021
  • Intracranial hemorrhage (ICH) refers to acute bleeding inside the intracranial vault. Not only does this devastating disease record a very high mortality rate, but it can also cause serious chronic impairment of sensory, motor, and cognitive functions. Therefore, a prompt and professional diagnosis of the disease is highly critical. Noninvasive brain imaging data are essential for clinicians to efficiently diagnose the locus of brain lesion, volume of bleeding, and subsequent cortical damage, and to take clinical interventions. In particular, computed tomography (CT) images are used most often for the diagnosis of ICH. In order to diagnose ICH through CT images, not only medical specialists with a sufficient number of diagnosis experiences are required, but even when this condition is met, there are many cases where bleeding cannot be successfully detected due to factors such as low signal ratio and artifacts of the image itself. In addition, discrepancies between interpretations or even misinterpretations might exist causing critical clinical consequences. To resolve these clinical problems, we developed a diagnostic model predicting intracranial bleeding and its subtypes (intraparenchymal, intraventricular, subarachnoid, subdural, and epidural) by applying deep learning algorithms to CT images. We also constructed a visualization tool highlighting important regions in a CT image for predicting ICH. Specifically, 1) 27,758 CT brain images from RSNA were pre-processed to minimize the computational load. 2) Three different CNN-based models (ResNet, EfficientNet-B2, and EfficientNet-B7) were trained based on a training image data set. 3) Diagnosis performance of each of the three models was evaluated based on an independent test image data set: As a result of the model comparison, EfficientNet-B7's performance (classification accuracy = 91%) was a way greater than the other models. 4) Finally, based on the result of EfficientNet-B7, we visualized the lesions of internal bleeding using the Grad-CAM. Our research suggests that artificial intelligence-based diagnostic systems can help diagnose and treat brain diseases resolving various problems in clinical situations.

SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구 (The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner)

  • 이민규;박찬록
    • 핵의학기술
    • /
    • 제28권1호
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터 (Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom)

  • 주성욱;안병헌;강성현;이영진
    • 한국방사선학회논문지
    • /
    • 제15권1호
    • /
    • pp.21-28
    • /
    • 2021
  • 전산화단층촬영장치 (computed tomography, CT)는 다른 방사선 촬영 장치와 비교하면 피폭이 많다는 문제점이 있다. 이러한 피폭을 감소하기 위하여 저선량 촬영을 하게 되면 영상에 잡음이 증가하게 된다. 이를 보완하기 위해 환자의 피폭선량은 감소시키면서 영상의 화질을 향상하는 다양한 잡음 제거 알고리즘이 개발되었으며, 그 중 우수한 시간 분해능을 가진 CT 장치에 효과적으로 적용할 수 있는 median modified Wiener filter (MMWF) 알고리즘이 제시되었다. 본 연구의 목적은 MMWF 알고리즘의 마스크 크기를 최적화하고, 기존의 알고리즘들에 대한 MMWF 알고리즘의 잡음 제거의 우수성을 보는 것이다. MATLAB 프로그램을 이용하여 획득한 Gaussian 잡음이 부가된 MASH 팬텀 복부 영상들로부터 각각의 마스크 크기가 설정된 MMWF 알고리즘을 적용한 후 root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC) 그리고 universal image quality index (UQI) 값을 비교하였다. 그 결과 5 × 5 마스크 크기에서 RMSE 값이 가장 낮고, PSNR, CC, UQI 값이 가장 높았다는 것을 확인할 수 있었다. 또한, 최적화된 마스크 크기로 Gaussian 필터, median 필터, Wiener 필터에 대한 MMWF의 RMSE, PSNR, CC, UQI 값을 비교하였으며 그 결과 MMWF 알고리즘에서 가장 개선된 RMSE, PSNR, CC, UQI 값을 얻을 수 있었다.