Acknowledgement
본 연구는 과학기술정보통신부의 재원으로 한국뇌연구원의 KBRI 기초 연구 프로그램의 지원을 받아 수행된 연구임(21-BR-03-04).
References
- Davenport T, Kalakota R. The potential for artificial intelligence in healthcare. Future Healthcare Journal, 2019;6(2):94-98. https://doi.org/10.7861/futurehosp.6-2-94
- Liu GD, Li YC, Zhang W, Zhang L. A Brief Review of Artificial Intelligence Applications and Algorithms for Psychiatric Disorders. Engineering, 2020;6(4):462-467. https://doi.org/10.1016/j.eng.2019.06.008
- Marietta M, Pedrazzi P, Girardis M, Torelli G. Intracerebral haemorrhage: An often neglected medical emergency. Internal and Emergency Medicine, 2007;2(1):38-45. https://doi.org/10.1007/s11739-007-0009-y
- Caceres JA, Goldstein JN. Intracranial Hemorrhage. Emergency Medicine Clinics of North America, 2012;30(3):771-794. https://doi.org/10.1016/j.emc.2012.06.003
- Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, Wang X, Bai J, Cao K, Song Q, Zhang H, Chen W, Guo X, Xia J. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology, 2019;29(11):6191-6201. https://doi.org/10.1007/s00330-019-06163-2
- Alfaro D, Levitt MA, English DK, Williams V, Eisenberg R. Accuracy of interpretation of cranial computed tomography scans in an emergency medicine residency program. Annals of Emergency Medicine, 1995;25(2):169-174. https://doi.org/10.1016/S0196-0644(95)70319-5
- Lal NR, Murray UM, Eldevik OP, Desmond JS. Clinical consequences of misinterpretations of neuroradiologic CT scans by on-call radiology residents. AJNR. American Journal of Neuroradiology, 2000;21(1):124-129.
- Strub WM, Leach JL, Tomsick T, Vagal A. Overnight Preliminary Head CT Interpretations Provided by Residents: Locations of Misidentified Intracranial Hemorrhage. American Journal of Neuroradiology, 2007;28(9):1679-1682. https://doi.org/10.3174/ajnr.a0653
- Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, 2017;145:137-165. https://doi.org/10.1016/j.neuroimage.2016.02.079
- He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. 2015;ArXiv:1512.03385 [Cs].
- Tan M, Le QV. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 2020;ArXiv:1905.11946 [Cs, Stat].
- Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet, 2018;392:2388-96. https://doi.org/10.1016/S0140-6736(18)31645-3
- Alfidi RJ, Haaga J, Meaney TF, MacIntyre WJ, Gonzalez L, Tarar R, Zelch MG, Boller M, Cook SA, Jelden G. Computed tomography of the thorax and abdomen: a preliminary report. Radiology, 1975;117:257-264. https://doi.org/10.1148/117.2.257
- Kim CH, Jung JI. Study for hounsfield units in computed tomogram with jaw lesion. J Korean Assoc Oral Maxillofac Surg, 2006;32:391-396.
- Lin T, Goyal P, Girshick R, He K, Dollar P. Focal Loss for Dense Object Detection. 2017;arXiv:1708.02002.
- Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. International Journal of Computer Vision, 2020;128(2):336-359. https://doi.org/10.1007/s11263-019-01228-7
- Pope PE, Kolouri S, Rostami M, Martin CE, Hoffmann H. Explainability Methods for Graph Convolutional Neural Networks. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019;10764-10773.
- Xie Q, Luong M, Hovy E, Le QV. Self-Training with Noisy Student Improves ImageNet Classification. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020;10687-10698.