• Title/Summary/Keyword: computational algorithm

Search Result 4,409, Processing Time 0.026 seconds

Silhouette Denoising for the Stone Cultural Heritages (석탑 문화재의 실루엣 추출을 위한 노이즈 제거)

  • Kim, Hak-Ran;WhangBo, Taek-Keun
    • Journal of Digital Contents Society
    • /
    • v.10 no.3
    • /
    • pp.381-388
    • /
    • 2009
  • This paper proposes a denoising method for the contour edges and crease edges of silhouette obtained from 3D scanned data of stone cultural heritages. It is often the case that the silhouette involves noise in the form of short-length line segments, due to rough surfaces of stone cultural heritages, weathering, and technical difficulties arising in data acquisition. Thus the removal of the short-length line segments from the contour edges and crease edges can result in a clear and accurate silhouette. An efficient computational algorithm is introduced to count the continuity of line segments; edges having not more than 3 line segments are removed. It has been verified that the new method is more effective than threshold-based silhouette extraction methods for stone heritages. Our method is applicable for various other data which are deteriorated by short-length line segments.

  • PDF

Implementation of a 4-Channerl ADPCM CODEC Using a DSP (DSP를 사용한 4채널용 ADPCM CODEC의 실시간 구현에 관한 연구)

  • Lee, Ui-Taek;Lee, Gang-Seok;Lee, Sang-Uk
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.5
    • /
    • pp.29-38
    • /
    • 1985
  • In this paper we have designed and implemented in real time a simple, efficient and flexible AOPCM cosec using a high speed digital processor, NEC 7720. For ADPCM system, we have used an instantaneous adaptive quantizer and a first-order fixed predictor. The software for NEC 7720 has been developed and it was found that the NEC 7720 was capable of performing the entire ADPCAt algorithm for 4 channels in real time as optimizing the program. Computer simulation has born made to investigate a computational accuracr of NEC 7720 and to de-termine necessary parameters for a ADPCM codec. Real telephone speech, RC-shaped Gaussian noise and 1004 Hz tone signal were used for simulation. In simulation, the parameters werc optimized from the computed SNR and the informal listening test. The developed software was tested in real time operation using a hardware emulator for NEC 7720. It took a maximum 23.25$\mu$s to encode one sample and 113.5$\mu$s, including all the necessary 1/0 operations, to encode 4 channels. In the case of decoding process, it took 24.75$\mu$s to decode one sample and 119.5$\mu$s to decode 4 channels.

  • PDF

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

Evaluation of Body Movement during Sleep with a Thermopile, Wavelets and Neuro-fuzzy Reasoning

  • Yoon, Young-Ro;Shin, Jae-Woo;Lee, Hyun-Sook;Jose C.Principe
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.5-10
    • /
    • 2004
  • Body movement is one of the important factors in sleep analysis. In this study, a thermopile detector with four channels was implemented as a non-contacting detector of body movement in sleep. Using a thermopile mathematical model and several frames of thermal images, the possibility of detecting body movement was evaluated. Instant body movement signals were evaluated for the upper, lower, and entire body using the Haar wavelet. This decomposition shows the points in time when the upper-body or lower-body movement occurred and the level of body movement. Additionally, partial body movement was decomposed in head-only, whole body, and leg-only movement using the ANFIS algorithm. Finally, three subject's data were evaluated for 60 minutes, and the detection rates of instant and partial body movement, on average, were 96.3% and 89.2%, respectively.

An Evaluation of Routing Methods and the Golden Zone Effect in the Warehouses Order Picking System (창고의 복도형 오더 피킹 시스템의 'Golden Zone' 운영과 경로 최적화 알고리즘 효과 비교)

  • Li, Jin;Lee, Yong-Dae;Kim, Sheung-Kown
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.67-76
    • /
    • 2011
  • Order picking in automotive service parts warehouses is considered to be the most labor-intensive operation. Such warehouses contain hundreds of thousands of items, but normally 20% of products contribute to about 80% of turnover according to Pareto's 80-20 principle. Therefore most fast moving items are located near an outbound area which is called the "Golden Zone". Order picking routing efficiency is related to productivity and labor cost. However, most companies use simple methods. In this paper, we describe a series of computational experiments over a set of test cases where, we compared various previously existing routing heuristics to an optimal algorithm. We focus on examining the influence of the golden zone on the performance and selection of routing methods. The results obtained show that the optimal routing method increases the productivity at least 17.2%, and all the routing methods have better performance as the pick up rate from the golden zone increases.

Wavelet Compression Experiments of the Remotely Sensed Images for Three Kinds of Wavelet Families

  • Jin, Hong-Sung;Han, Dong-Yeob
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.455-462
    • /
    • 2009
  • A method to find the nearly optimal PSNR values for compression was tried to remotely sensed images. There is no rule to find the best wavelet pairs for image processing. The expected wavelet pairs following the suggested algorithm showed the optimal result for various kinds of images. Firstly, the PSNR variations with three wavelet families were analyzed. In many cases the longer wavelet filter shows the higher PSNR value, but the rate is getting less in orthogonal wavelet families. Wavelets with moderate filter length are suggested at the point of computational cost. For biorthogonal families it was hard to predict from the length of filters. Multiresolution wavelet analysis was used up to level 3 with three kinds of wavelet families. Biorthogonal wavelet family showed irregular pattern to get the maximum PSNR values, while orthogonal wavelet families showed regular pattern. In orthogonal wavelet families the nearly optimal wavelet pair can be predicted from the level 1.

  • PDF

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Effectiveness Analysis of Computing Thinking with Unplugged in Digital Transformation (디지털 트랜스포메이션 시대의 언플러그드를 적용한 컴퓨팅 사고력에 대한 효과성 분석)

  • Lee, Myung-Suk
    • Journal of Digital Convergence
    • /
    • v.18 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • Digital transformation is about revolutionizing the interaction between virtual and reality. The complex problems that arise in this process must be solved, and one of the methods is computing thinking. Therefore, this study aims to observe whether software education that uses unplugged as liberal education is effective in enhancing computing thinking. For this, 5 elements of computing thinking were extracted and unplugged was applied to liberal software classes, and classes were conducted. During one semester, 16 sessions of classes were conducted and computing thinking enhancement was measured through surveys. As a result, the computing thinking of the students increased overall after classes. Observation surveys showed that, among computing thinking elements, students of all academic fields felt difficulties conceptualizing abstraction elements, those of arts and physical education felt more difficulties with algorithm elements, and those of the humanities felt more difficulties with pattern recognition elements. In the future, various contents for each element should be developed by academic field to aid learner understanding.

Physics-based Algorithm Implementation for Characterization of Gate-dielectric Engineered MOSFETs including Quantization Effects

  • Mangla, Tina;Sehgal, Amit;Saxena, Manoj;Haldar, Subhasis;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.159-167
    • /
    • 2005
  • Quantization effects (QEs), which manifests when the device dimensions are comparable to the de Brogile wavelength, are becoming common physical phenomena in the present micro-/nanometer technology era. While most novel devices take advantage of QEs to achieve fast switching speed, miniature size and extremely small power consumption, the mainstream CMOS devices (with the exception of EEPROMs) are generally suffering in performance from these effects. In this paper, an analytical model accounting for the QEs and poly-depletion effects (PDEs) at the silicon (Si)/dielectric interface describing the capacitance-voltage (C-V) and current-voltage (I-V) characteristics of MOS devices with thin oxides is developed. It is also applicable to multi-layer gate-stack structures, since a general procedure is used for calculating the quantum inversion charge density. Using this inversion charge density, device characteristics are obtained. Also solutions for C-V can be quickly obtained without computational burden of solving over a physical grid. We conclude with comparison of the results obtained with our model and those obtained by self-consistent solution of the $Schr{\ddot{o}}dinger$ and Poisson equations and simulations reported previously in the literature. A good agreement was observed between them.

A Hardware Implementation of Pyramidal KLT Feature Tracker (계층적 KLT 특징 추적기의 하드웨어 구현)

  • Kim, Hyun-Jin;Kim, Gyeong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.2
    • /
    • pp.57-64
    • /
    • 2009
  • This paper presents the hardware implementation of the pyramidal KLT(Kanade-Lucas-Tomasi) feature tracker. Because of its high computational complexity, it is not easy to implement a real-time KLT feature tracker using general-purpose processors. A hardware implementation of the pyramidal KLT feature tracker using FPGA(Field Programmable Gate Array) is described in this paper with emphasis on 1) adaptive adjustment of threshold in feature extraction under diverse lighting conditions, and 2) modification of the tracking algorithm to accomodate parallel processing and to overcome memory constraints such as capacity and bandwidth limitation. The effectiveness of the implementation was evaluated over ones produced by its software implementation. The throughput of the FPGA-based tracker was 30 frames/sec for video images with size of $720{\times}480$.