Evaluation of Body Movement during Sleep with a Thermopile, Wavelets and Neuro-fuzzy Reasoning

  • Yoon, Young-Ro (Department of Biomedical Engineering, Yonsei University) ;
  • Shin, Jae-Woo (Home Healthcare Management System Research Center, Yonsei University) ;
  • Lee, Hyun-Sook (Department of Computer & Electronic Physics, Sangji University) ;
  • Jose C.Principe (Computational Neuro Engineering Laboratory, Department of Electrical Engineering, University of Florida)
  • Published : 2004.02.01

Abstract

Body movement is one of the important factors in sleep analysis. In this study, a thermopile detector with four channels was implemented as a non-contacting detector of body movement in sleep. Using a thermopile mathematical model and several frames of thermal images, the possibility of detecting body movement was evaluated. Instant body movement signals were evaluated for the upper, lower, and entire body using the Haar wavelet. This decomposition shows the points in time when the upper-body or lower-body movement occurred and the level of body movement. Additionally, partial body movement was decomposed in head-only, whole body, and leg-only movement using the ANFIS algorithm. Finally, three subject's data were evaluated for 60 minutes, and the detection rates of instant and partial body movement, on average, were 96.3% and 89.2%, respectively.

체동은 수면 분석에 있어서 중요한 변수중의 하나이다. 본 연구에서는 수면 중에 발생하는 체동을 비접촉 방식으로 검출하기 위하여 4채널의 써모파일 검출기를 구현하였으며, 써모파일 센서를 이용한 방식의 체통 검출 가능성을 확인하기 위해 열적외선 카메라를 통해 획득한 영상을 써모파일의 수학적 모델에 적용하였다 합성된 체동 신호는 Haar 웨이브렛을 이용하여 변환함으로써 체통이 발생한 시점과 움직임의 크기를 상체 및 하체로 나누어 순간 체동을 검출하였다. 또한 뉴로-퍼지 알고리즘인 ANFIS를 이용하여 발생한 체동이 상체만 움직인 것인지 또는 하체만 움직인 것인지 또는 몸 전체가 움직인 것인지에 대한 부위별 체동을 검출하였고, 총 3명의 피험자에 대해 60분간의 데이터를 획득하여 실험한 결과 순간 체동과 부위별 체통에 대해 각각 평균 96.3%와 39.2% 의 검출률을 나타냈다.

Keywords

References

  1. Proc. of IEEE IRSO v.1 Sensor pillow system:monitoring reporation and bady movement in sleep Tatsuya Harada;Akiko Sakata;Taketoshi Mori;Tomomasa Sato
  2. Proc. of IEEE SMC'99 v.6 The surrounding sensor approach application to sleep apnea syndrome diagnosis based on image processing Yoshifumi Nishida;Toshio Hori;Tomomasa Sato;Sigeoki Hirai
  3. IEEE Trans. Medical Imaging v.20 no.9 Ectraction of motion strength and motor activity signals from video recordings of neonatal seizures Nicolas B. Karayiannis;Seshadri Srinvasan;Rishi Bhattacharya https://doi.org/10.1109/42.952733
  4. BIS/BRI A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects Allan Rechtschaffen;Anthony Kales
  5. Sleep v.18 The role of actigraohy in the evaluation of sleep disorders Avi Sadeh;Peter J Hauri;Daniel F. Kripke;Peretz Lavie
  6. Proc. of IEEE EMBS v.4 Monitoring of bady mevement during sleep in bed Toshiyo Tamura;Chun-ichi Miyasako;Toshiro Fujimoto;Toshimitsu Nomura
  7. Proc. of IEEE IROS2000 v.2 Sensorzed Environment for self-communication based on observation of daily human behavior Yoshifumi Nishida;Toshio Hori;Takashi Suehiro;Sigeoki Hirai
  8. RESNA Reno Unobtrusive vital signs momitoring from a multisensor bed sheet Machiel Van def Loos;Hisato Kobayashi;Gregory Liu;Ying Yu Tai;Joel Ford;Joseph Norman;Tsuyoshi Tabata;Tomoaki Osada
  9. Proc. of IEEE EMBS v.1 Monitoring bed temperature in elderly in the home Toshiyo Tamura;Atsushi Nishigaichi;Tatuso Togawa
  10. Proceeding of IEEE v.83 Neuro-Fuzzy Modeling and Control Roger Jang;Chuen-Tsai Sun https://doi.org/10.1109/5.364486
  11. IEEE Trans. Biomed Eng. v.48 no.3 Derived fuzzy knowledge model for estimating the depth of anesthesia Xu-Sheng Zhang;Rob J. Roy https://doi.org/10.1109/10.914794