• 제목/요약/키워드: computational algorithm

Search Result 4,381, Processing Time 0.031 seconds

A Computational Improvement of Otsu's Algorithm by Estimating Approximate Threshold (근사 임계값 추정을 통한 Otsu 알고리즘의 연산량 개선)

  • Lee, Youngwoo;Kim, Jin Heon
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.163-169
    • /
    • 2017
  • There are various algorithms evaluating a threshold for image segmentation. Among them, Otsu's algorithm sets a threshold based on the histogram. It finds the between-class variance for all over gray levels and then sets the largest one as Otsu's optimal threshold, so we can see that Otsu's algorithm requires a lot of the computation. In this paper, we improved the amount of computational needs by using estimated Otsu's threshold rather than computing for all the threshold candidates. The proposed algorithm is compared with the original one in computation amount and accuracy. we confirm that the proposed algorithm is about 29 times faster than conventional method on single processor and about 4 times faster than on parallel processing architecture machine.

Multiple Multicast Tree Allocation Algorithm in Multicast Network

  • Lee Chae Y.;Cho Hee K.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.120-127
    • /
    • 2002
  • The multicasting is defined as the distribution of the same information stream from one to many nodes concurrently. There has been an intensive research effort to design protocols and construct multicast routing graphs for a single multicast group. However. there have been few researches about the relation between multiple and concurrent multicast groups. In this paper, the multiple multicast tree allocation algorithm to avoid congestion is proposed. The multicast group with different bandwidth requirement is also considered. A two-phase algorithm is proposed. The first phase is for basic search and the second phase for further improvement. The performance of the proposed algorithm is experimented with computational results. Computational results show that the proposed algorithm outperforms an existing algorithm.

  • PDF

A motion estimation algorithm with low computational cost using low-resolution quantized image (저해상도 양자화된 이미지를 이용하여 연산량을 줄인 움직임 추정 기법)

  • 이성수;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.81-95
    • /
    • 1996
  • In this paper, we propose a motio estiamtion algorithm using low-resolution quantization to reduce the computation of the full search algorithm. The proposed algorithm consists of the low-resolution search which determins the candidate motion vectors by comparing the low-resolution image and the full-resolution search which determines the motion vector by comparing the full-resolution image on the positions of the candidate motion vectors. The low-resolution image is generated by subtracting each pixel value in the reference block or the search window by the mean of the reference block, and by quantizing it is 2-bit resolution. The candidate motion vectors are determined by counting the number of pixels in the reference block whose quantized codes are unmatched to those in the search window. Simulation results show that the required computational cost of the proposed algorithm is reduced to 1/12 of the full search algorithm while its performance degradation is 0.03~0.12 dB.

  • PDF

Structural reliability analysis using response surface method with improved genetic algorithm

  • Fang, Yongfeng;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.139-142
    • /
    • 2017
  • For the conventional computational methods for structural reliability analysis, the common limitations are long computational time, large number of iteration and low accuracy. Thus, a new novel method for structural reliability analysis has been proposed in this paper based on response surface method incorporated with an improved genetic algorithm. The genetic algorithm is first improved from the conventional genetic algorithm. Then, it is used to produce the response surface and the structural reliability is finally computed using the proposed method. The proposed method can be used to compute structural reliability easily whether the limit state function is explicit or implicit. It has been verified by two practical engineering cases that the algorithm is simple, robust, high accuracy and fast computation.

Contour Parallel Offset and Tool-Path Linking Algorithm for Pocketing Using Pairwise Intersection Approach (Pairwise Intersection 방식을 이용한 윤곽 오프셋 및 공구경로 연결 알고리즘)

  • Huh, Jin-Hun;Kim, Yeoung-Il;Jun, Cha-Soo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.5
    • /
    • pp.375-383
    • /
    • 2006
  • Presented in this paper is a new fast and robust algorithm generating NC tool path for 2D pockets with islands. The input shapes are composed of line segments and circular arcs. The algorithm has two steps: creation of successive offset loops and linking the loops to a tool path. A modified pairwise technique is developed in order to speed up and stabilize the offset process, and the linking algorithm is focused on avoiding thin-wall cutting and minimizing tool retractions. The proposed algorithm has been implemented in C++ and some illustrative examples are presented to show the practical strength of the algorithm.

The Integrated eLoran/GPS Navigation Algorithm for Reduced Calculational Complexity and High Accuracy (계산량과 정확도를 동시에 만족하는 eLoran/GPS 통합 항법 알고리즘)

  • Song, Se-Phil;Shin, Mi-Young;Son, Seok-Bo;Kim, Young-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.612-619
    • /
    • 2011
  • Satellite navigation system such as GPS is becoming more important infrastructure for positioning, navigation and timing. But satellite navigation system is vulnerable to interferences because of the low received power, complementary navigation system such as eLoran is needed. In order to develop eLoran/GPS navigation system, integrated eLoran/GPS navigation algorithm is necessary. In this paper, new integrated eLoran/GPS navigation algorithm is proposed. It combines the position domain integration and the range domain integration to get accurate position with less computational burden. Also an eLoran/GPS evaluation platform is designed and performance evaluation of the proposed algorithm using the evaluation platform is given. The proposed algorithm gives an accuracy of the range domain integration with a computational load of the position domain integration.

QRD-LS Adaptive Algorithm with Efficient Computational Complexity (효율적 계산량을 가지는 QRD-LS 적응 알고리즘)

  • Cho, Hae-Seong;Cho, Ju-Phil
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.85-89
    • /
    • 2010
  • This paper proposes a new QRD-LS adaptive algorithm with computational complexity of O(N). The main idea of proposed algorithm(D-QR-RLS) is based on the fact that the computation for the unit vector of is made from the process during Givens Rotation. The performance of the algorithm is evaluated through computer simulation of FIR system identification problem. As verified by simulation results, this algorithm exhibits a good performance. And, we can see the proposed algorithm converges to optimal coefficient vector theoretically.

An Improved Branch-and-Bound Algorithm for Scheduling Jobs on Identical Machines

  • Park, Sung-Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1975
  • In an earlier paper ('Scheduling Jobs on a Number of Identical Machines' by Elmaghraby and Park, March 1974, AIIE Transactions) a branch-and-bound algorithm was developed for the sequencing problem when all jobs are available to process at time zero and are independet (i.e., there are not a priori precedence relationships among jobs.). However, the amount of computation required by the algorithm was not considered to be short if more than 50 jobs were processed. As an effort to improve the algorithm, the present paper modifies the implicit enumeration procedure in the algorithm so that moderately large problems can be treated with what appears to be a short computational time. Mainly this paper is concerned with improving the lower bound in the implicit enumeration procedure. The computational experiences with this new branch-and-bound algorithm are given.

  • PDF

Heuristic Algorithm for Facility Layout Design with Fixed Input and Output Points (입력점과 출력점이 고정된 설비배치설계를 위한 휴리스틱 알고리즘)

  • Jeong, Dong-Hwa;Seo, Yoon-Ho
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.121-132
    • /
    • 2007
  • The facility layout problem (FLP) involves the positioning of facilities within a given workplace in order to minimize the material flow distance between facilities. In this paper, we focus on the FLP in which the each facility has a rectangular shape and an input and output points. We develop a heuristic algorithm in which the facilities are arranged according to the layout algorithm using center of gravity and then simulated annealing algorithm is applied to improve the solution. A comparison of the computational results with exiting algorithms shows that the proposed algorithm provides better solutions in reasonable range of computational time.

An inverse determination method for strain rate and temperature dependent constitutive model of elastoplastic materials

  • Li, Xin;Zhang, Chao;Wu, Zhangming
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.539-551
    • /
    • 2021
  • With the continuous increase of computational capacity, more and more complex nonlinear elastoplastic constitutive models were developed to study the mechanical behavior of elastoplastic materials. These constitutive models generally contain a large amount of physical and phenomenological parameters, which often require a large amount of computational costs to determine. In this paper, an inverse parameter determination method is proposed to identify the constitutive parameters of elastoplastic materials, with the consideration of both strain rate effect and temperature effect. To carry out an efficient design, a hybrid optimization algorithm that combines the genetic algorithm and the Nelder-Mead simplex algorithm is proposed and developed. The proposed inverse method was employed to determine the parameters for an elasto-viscoplastic constitutive model and Johnson-cook model, which demonstrates the capability of this method in considering strain rate and temperature effect, simultaneously. This hybrid optimization algorithm shows a better accuracy and efficiency than using a single algorithm. Finally, the predictability analysis using partial experimental data is completed to further demonstrate the feasibility of the proposed method.