• Title/Summary/Keyword: compressive strength equation

Search Result 359, Processing Time 0.027 seconds

A Development of Soundness Evaluation Index for Poor Appearance Distribution Concrete Poles (외관불량 배전용 콘크리트전주 건전도 평가지표 개발)

  • Wong, Yoon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.35-44
    • /
    • 2014
  • This study was to secure the safety of poor appearance distribution concrete poles effectively and to reduce the replacement costs of them by developing a soundness evaluation index. The researcher of this study investigated poor appearance types of concrete pole, collected 53 of test samples, and tested pole strength. As a result of strength test, only 17 percent of poor appearance concrete poles were below 2.0 of safety factor spec. As results of multiple regression analysis, it is verified that surface air void, horizontal crack, net-shaped crack, elapsed year, vertical crack, and deterioration in concrete compressive strength have statistically negative effects on safety factor of concrete poles in a significant level. The researcher set up a soundness evaluation index by using multiple regression equation, and suggested that poor appearance concrete poles should be replaced or reinforced only in case of soundness evaluation score of 150 or above.

Study on the Mixing Design Method of Concrete Using Finely Ground Granulated Furnace Blast Slag (고로슬래그 미분말 혼입 콘크리트의 배합설계방법에 관한 연구)

  • Shin, Sung-Woo;Lee, Han-Seung;Han, Geum-Wook;Kim, Jung-Sik;Park, Gui-Suk;Kang, Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.625-630
    • /
    • 1999
  • This study was carried out to investigate quantitatively the relatonship between the water binder ratio and the concrete strength using finely ground granulated furnace blast slag to apply f 0.5% type admixture. The experimental parameters are water-binder ratio (40, 45, 50, 55, 60%) and slag contents(0, 10, 20, 30%). As a result, it can make that the water-binder ratio of concrete contented slag can be calculated by equation using relationship between compressive strength of concrete and water-binder ratio which is consisted of mixing strength and cement strength K.

  • PDF

An Experimental Study on the Strength and Permeability Characteristics of Repair Mortar (보수용 모르타르의 강도 및 투과특성에 관한 연구)

  • Paik, Shin-Won
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.105-109
    • /
    • 2003
  • Structure surfaces damaged due to many causes are repaired by several special mortars. But wide studies about the permeability of these mortars were rarely conducted. In this study compressive strength test, flexural strength test and bond strength test of these mortars were conducted. And chloride ion penetration test was also conducted to explore the permeability charcteristics of selected repair mortars. This test was carried out following the standard ASTM C1202-91. Colouriemtric penetration depth can be drawn from these test results using a relationship equation between colourimetric penetration depth and charge passed which C. Andrade suggested. Diffusion coefficient can be calculated by CTH rapid method. To the end, the present study can provide a firm base for the application of repair mortars to concrete structures.

The Buckling Behavior of High-strength Steel Truss Columns with Box Section (박스단면 고강도 트러스 기둥재의 좌굴거동)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-86
    • /
    • 2007
  • Recently, as steel structures become higher and more long-spanned, construction of high-strength steels is increasing gradually. Application of high-strength steel can be possible to make a more light and economic steel structures by reducing thickness and space. To apply a high-strength steel to structure, criteria of high-strength steel for buckling is required. However, current specification is not sufficient for criteria of high-strength steels. In this paper, buckling behavior of high-strength steel truss columns with box sections is investigated by using three-dimensional elastic-plastic finite deformation analysis program. The criteria equation for allowable compressive stress of high-strength steel truss columns with box sections is proposed and confirmed the applicability. It is reasonable form analytical results that formulated equations after finding the upper limit of allowable axial direction compression stresses of high-strength steel truss columns. And new equation is suitable to buckling design of high-strength steel truss columns.

  • PDF

Modified Equation for Ductility Demand Based Confining Reinforcement Amount of RC Bridge Columns (철근콘크리트 교각의 소요연성도에 따른 심부구속철근량 산정식 수정)

  • Lee, Jae-Hoon;Son, Hyeok-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.169-178
    • /
    • 2009
  • An equation for calculating confining reinforcement amount of RC bridge columns, specified in the current bridge design codes, has been made to provide additional load-carrying strength for concentrically loaded columns. The additional load-carrying strength will be equal to or slightly greater than the resistant strength of a column against axial load, which is lost because the cover concrete spalls off. The equation considers concrete compressive strength, yield strength of transverse reinforcement, and the section area ratio as major variables. Among those variables, the section area ratio between the gross section and the core section, varying by cover thickness, is a variable which considers the strength in the compression-controlled region. Therefore, the cross section ratio does not have a large effect in the aspect of ductile behavior of the tension-controlled region, which is governed by bending moment rather than axial force. However, the equation of the design codes for calculating confining reinforcement amount does not directly consider ductile behavior, which is an important factor for the seismic behavior of bridge columns. Consequently, if the size of section is relatively small or if the section area ratio becomes excessively large due to the cover thickness increased for durability, too large an amount of confining reinforcement will be required possibly deteriorating the constructability and economy. Against this backdrop, in this study, comparison and analysis were performed to understand how the cover thickness influences the equation for calculating the amount of confining reinforcement. An equation for calculating the amount of confining reinforcement was also modified for reasonable seismic design and the safety. In addition, appropriateness of the modified equation was examined based on the results of various test results performed at home and abroad.

A Study on the Estimation for the Guaranteed Strength and Construction Quality of the Combined High Flowing Concrete in Slurry Wall (지하연속벽용 병용계 고유동 콘크리트의 시공 품질 및 보증강도 평가에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.811-817
    • /
    • 2006
  • The primary purpose of this study is to estimate the guaranteed strength and construction quality of the combined high flowing concrete which is used in the slurry wall of underground LNG storage tank. The required compressive strength of this type of concrete become generally known as a non economical value because it is applied the high addition factor for variation coefficients and low reduction factor under water concrete. Therefore, after estimation of the construction quality and guaranteed strength in actual site work, this study is to propose a suitable equation to calculate the required compressive strength in order to improve its difference. Application results in actual site work are shown as followings. The optimum nix design proportion is selected that has water-cement ratio 51%, sand-aggregate ratio 48.8%, and replacement ratio 42.6% of lime stone powder by cement weight. Test results of slump flow as construction quality give average 616~634mm. 500mm flowing time and air content are satisfied with specifications in the rage of 6.3 seconds and 4.0% respectively. Results of strength test by standard curing mold show that average compressive strength is 49.9MPa, standard deviation and variation coefficients are low as 1.66MPa and 3.36%. Also test results by cored cylinder show that average compressive strength is 66.4MPa, standard deviation and variation coefficients are low as 3.64MPa and 5.48%. The guaranteed strength ratio between standard curing mold and cored cylinder show 1.23 and 1.32 in the flanks. It is shown that applied addition factor for variation coefficients and reduction factor under water concrete to calculate the required compressive strength is proved very conservative. Therefore, based on these results, it is proposed new equation having variation coefficients 7%, addition factor 1.13 and reduction factor 0.98 under water connote.

Experimental Study on Bond Strength of Deformed Bars in Artificial Lightweight Aggregate Concrete (경량콘크리트의 부착특성에 대한 실험적 연구)

  • Cho, Jang-Se;La, Sung-Jun;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.1
    • /
    • pp.43-53
    • /
    • 2011
  • For reinforced concrete members, the bond strength is one of the important factors between two materials: concrete and reinforcing element. This study concerns the bond strength of deformed bars in artificial lightweight aggregate concrete by pull-out test. 144 cubic specimens were manufactured for the test. concrete compressive strength, size of deformed bar and embedment lengths were considered as variables in this study. Normal concrete with W/C ratio 50% specimens were tested for the comparison. Test results included the bond stress-slip responses and modes of failure. Bond strength increased with an increase of compressive strength of concrete according to W/C ratio. The equation of bond stress of polymer-modified lightweight aggregate concrete were proposed by regression analysis based on the result.

Side Resistance of Rock Socketed Drilled Shafts in Consideration of the Shaft Size Effects (크기효과를 고려한 암반에 근입된 현장타설말뚝의 주면마찰력)

  • Sagong Myung;Paik Kyu-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.115-124
    • /
    • 2004
  • According to Sagong and Paik (2003), the side resistance of rock socketed drilled shafts is affected by rock quality, types, uniaxial compressive strength, and confining stress. Their approach based upon the Hoek-Brown criterion provides reasonable predictions of the side resistance. In this study, we propose an equation to calculate the side resistance considering size effects of the shafts and investigate the influence of drilled shaft diameter on the side resistance. A new method employs the modified Hoek-Brown criterion together with an empirical size effect of rock core. From the previous field tests, 12 pile load test results were collected and compared with prediction calculated from the equation proposed in this study. In a given condition, similar results between measurement and estimate are observed. From the parametric study on the GSI, confining stress, uniaxial compressive of intact rock and pile size, it is shown that uniaxial compressive strength is the most influential parameter on the side resistance. Though pile size shows the least influence on the resistance, the size effect is apparent as rock quality increases.

A Proposal of Minimum Steel Ratio Considering Size Effect for Flexural Reinforced Concrete Member (크기효과가 고려된 철근콘크리트 휨 부재의 최소철근비 제안)

  • Yoo, Sung-Won;Her, Yoon
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.128-136
    • /
    • 2010
  • In according with concrete structural design standard, it is common designing flexure reinforcement concrete to induce tension failure. So reinforcing ratio is limited to inducing tension failure. And maximum reinforcing ratio is regulated to protecting concrete compression strength caused by over reinforced building. Minimum reinforcing ratio is also limited in designing standard to protecting brittle failure as extremely using less reinforcing bar. But in minimum reinforcing ratio it is extremely conservative or it is sometimes impossible to induce stable tension-failure because they are depending on yield failure and experienced method and concrete designing standard strength. Therefore the purpose of the present paper is to evaluate the flexural behavior of minimum steel ratio of reinforced concrete of beams and to propose the guide-line of equation of minimum steel ratio by performing static flexural test of 16 beams according to size effect, number of steel, yielding stress of steel, and concrete compressive strength which are presumed effective variables. From experimental results, the equation of minimum steel ratio was newly proposed considered size effect.

A Study on the Correlation between Uniaxial Compressive Strength of Rock by Elastic Wave Velocity and Elastic Modulus of Granite in Seoul and Gyeonggi Region (서울·경기지역 화강암의 탄성파속도와 탄성계수에 의한 암석의 일축압축강도와의 상관성 연구)

  • Son, In-Hwan;Kim, Byong-kuk;Lee, Byok-Kyu;Jang, Seung-jin;Lee, Su-Gon
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.249-258
    • /
    • 2019
  • Purpose: The purpose of this study is to attain the correlation analysis and thereby to deduce the uniaxial compressive strength of rock specimens through the elastic wave velocity and the elastic modulus among the physical characteristics measured from the rock specimens collected during drilling investigations in Seoul and Gyeonggi region. Method: Experiments were conducted in the laboratory with 119 granite specimens in order to derive the correlation between the compressive strength of the rocks and elastic wave velocity and elastic modulus. Results: In the case of granite, the results of the analysis of the interaction between the compressive strength of a rock and the elastic wave velocity and elastic modulus were found to be less reliable in the relation equation as a whole. And it is believed that the estimation of the compressive strength by the elastic wave velocity and elastic modulus is less used because of the composition of non-homogeneous particles of granite. Conclusion: In this study, the analysis of correlation between the compressive strength of a rock and the elastic wave velocity and elastic modulus was performed with simple regression analysis and multiple regression analysis. The coefficient determination ($R^2$) of simple regression analysis was shown between 0.61 and 0.67. Multiple regression analysis was 0.71. Thus, using multiple regression analysis when estimating compressive strength can increase the reliability of the correlation. Also, in the future, a variety of statistical analysis techniques such as recovery analysis, and artificial neural network analysis, and big data analysis can lead to more reliable results when estimating the compressive sterength of a rock based on the elastic wave velocity and elastic modulus.