• 제목/요약/키워드: compressive properties

검색결과 4,076건 처리시간 0.034초

Mechanical properties and durability of self consolidating cementitious materials incorporating nano silica and silica fume

  • Mahdikhani, Mahdi;Ramezanianpour, Ali Akbar
    • Computers and Concrete
    • /
    • 제14권2호
    • /
    • pp.175-191
    • /
    • 2014
  • In recent years, the emergence of nanotechnology and nanomaterial has created hopes to improve various properties of concrete. Nano silica as one of these materials has been introduced as a cement replacement material for concrete mixture in construction applications. It can modify the properties of concrete, due to high pozzolanic reactions and also making a denser microstructure. On the other hand, it is well recognized that the use of mineral admixtures such as silica fume affects the mechanical properties and durability of cementitious materials. In addition, the superior performance of self-consolidating concrete (SCC) and self-consolidating mortars (SCM) over conventional concrete is generally related to their ingredients. This study investigates the effect of nano silica and silica fume on the compressive strength and chloride permeability of self-consolidating mortars. Tests include compressive strength, rapid chloride permeability test, water permeability, capillary water absorption, and surface electrical resistance, which carried out on twenty mortar mixtures containing zero to 6 percent of nano silica and silica fume. Results show that SCMs incorporating nano silica had higher compressive strength at various ages. In addition, results show that nano silica has enhanced the durability SCMs and reduced the chloride permeability.

콘크리트 역학적 성질의 통계적 특성 (Statistical Characteristic of Mechanical Properties of Concrete)

  • 김지상;신정호;최연왕;문재흠;김주형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.657-660
    • /
    • 2008
  • 철근콘크리트 구조물의 설계 및 해석에 있어 구성 재료의 역학적 특성은 기본적인 자료로서 그 불확실성 및 변동성을 합리적으로 고려하는 것이 매우 중요하다. 이 연구에서는 기존의 문헌자료 및 추가적인 실험 자료를 바탕으로 콘크리트의 품질 기준으로 가장 널리 쓰이고 있는 콘크리트 압축강도의 통계적 모델을 확립하고, 압축강도와 쪼갬 인장강도의 관계식을 정리하였으며 콘크리트 구조설계기준에 제시된 콘크리트의 탄성계수를 결정하는 방법을 검증하였다. 각 결과는 우리나라 설계기준을 포함한 각국의 설계기준 상의 규정과 비교하여 그 적합성을 확인하였다. 향후 추가적인 실험 연구 및 자료조사가 이루어지면 우리나라 실정을 반영하는 보다 합리적인 콘크리트 역학적 성질의 통계적 특성에대한 모델을 제시할 수 있을 것으로 판단된다.

  • PDF

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

석회석 소성 점토 시멘트(LC3) 페이스트의 고온 내화성능에 관한 연구 (Experimental Study About Properties of Limestone-calcined-clay Cement (LC3) Concrete Under High Temperature)

  • 왕소용
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 가을 학술논문 발표대회
    • /
    • pp.133-134
    • /
    • 2021
  • Limestone-calcined clay-Cement (LC3) concrete provides a solution for sustainability, durability, and profitability of concrete industry. This study shows experimental studies of the macro properties (residual compressive strength), the meso properties (mesoscopic images), and micro properties (thermogravimetric (TG) analysis, X-ray powder diffraction (XRD), FTIR spectra, Raman spectra, Mercury intrusion porosimetry, and SEM) of LC3 paste with various mixtures and at high elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃). We find (1) Regarding to macro properties, LC3 cementitious materials are at a disadvantage in compressive strength when the temperature is higher than 300 ℃. (2) Regarding to meso properties, when the temperature reached 550 ℃, all samples generated more meso cracks. (3) Regarding to micro properties, first, as the substitution amount increases, its CH content decreases significantly; second, at 900 ℃, for samples with calcined clay, a large amount of gehlenite crystalline phase was found; third, at elevated temperatures (20 ℃, 300 ℃, 550 ℃ and 900 ℃), there is a linear relationship between the residual compressive strength and the cumulative pore volume; fourth, at 900 ℃, a large amount of dicalcium silicate was generated, and damage cracks were more pronounced. The experimental results of this study are valuable of material design of fire resistance of LC3 concrete.

  • PDF

Effect of Elevated Temperature on Mechanical Properties of Limestone, Quartzite and Granite Concrete

  • Tufail, Muhammad;Shahzada, Khan;Gencturk, Bora;Wei, Jianqiang
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권1호
    • /
    • pp.17-28
    • /
    • 2017
  • Although concrete is a noncombustible material, high temperatures such as those experienced during a fire have a negative effect on the mechanical properties. This paper studies the effect of elevated temperatures on the mechanical properties of limestone, quartzite and granite concrete. Samples from three different concrete mixes with limestone, quartzite and granite coarse aggregates were prepared. The test samples were subjected to temperatures ranging from 25 to $650^{\circ}C$ for a duration of 2 h. Mechanical properties of concrete including the compressive and tensile strength, modulus of elasticity, and ultimate strain in compression were obtained. Effects of temperature on resistance to degradation, thermal expansion and phase compositions of the aggregates were investigated. The results indicated that the mechanical properties of concrete are largely affected from elevated temperatures and the type of coarse aggregate used. The compressive and split tensile strength, and modulus of elasticity decreased with increasing temperature, while the ultimate strain in compression increased. Concrete made of granite coarse aggregate showed higher mechanical properties at all temperatures, followed by quartzite and limestone concretes. In addition to decomposition of cement paste, the imparity in thermal expansion behavior between cement paste and aggregates, and degradation and phase decomposition (and/or transition) of aggregates under high temperature were considered as main factors impacting the mechanical properties of concrete. The novelty of this research stems from the fact that three different aggregate types are comparatively evaluated, mechanisms are systemically analyzed, and empirical relationships are established to predict the residual compressive and tensile strength, elastic modulus, and ultimate compressive strain for concretes subjected to high temperatures.

쓰레기 소각재 용융슬래그 미분말을 혼입한 모르타르의 압축강도 특성에 대한 연구 (An Study on Compressive Strength Properties of Mortar with Municipal Solid Waste Incineration Ash Melted Slag Powder)

  • 이용무;김영수
    • 한국건축시공학회지
    • /
    • 제16권1호
    • /
    • pp.53-58
    • /
    • 2016
  • 본 연구는 쓰레기 소각재 용융슬래그 미분말을 혼화재료로 사용하기 위한 연구로 소각재 용융슬래그 미분말을 혼입한 모르타르에 대한 연구를 수행한 것이다. 쓰레기 소각재 용융슬래그 미분말의 혼입율을 10, 20, 30, 40, 50%로 다양하게 한 후 굳지 않은 모르타르의 플로 특성과 재령 3, 7, 14, 28, 56일의 압축강도를 평가하였다. 실험결과 쓰레기 소각재 용융슬래그 미분말의 혼입율이 증가할수록 유동성이 증가하였고, 3일, 7일의 압축강도는 점진적으로 감소하였으나, 재령 28, 56일 압축강도는 증가하는 것을 알 수 있었다.

비소성 황토 결합재를 혼합한 콘크리트의 강도 발현 평가를 위한 초음파 속도법의 검토 (A Study on Evaluating the Compressive Strength Development of Concrete Mixed with Non-sintered Hwangto Admixture by an Ultrasonic Method)

  • 김정욱;김원창;김규용;이태규
    • 한국건축시공학회지
    • /
    • 제23권1호
    • /
    • pp.35-43
    • /
    • 2023
  • 본 연구에서는 시멘트 대체 재료로서 비소성 황토(NHT)를 혼합한 콘크리트의 역학적 특성을 평가하였으며, 초음파 속도 분석을 통한 콘크리트의 강도 예측식을 제안하였다. 혼합된 NHT의 시멘트 치환율을 0, 15 및 30%로 설정하였으며, 시멘트 및 NHT의 분체량에 대한 영향을 평가하기 위해 목표 강도를 30 및 45MPa로 설정하였다. 평가한 항목은 압축 강도, 초음파 속도 및 탄성계수로 설정하였으며, 재령 1, 3, 7 및 28일마다 설정한 항목을 측정하였다. 실험 결과, NHT 치환율이 증가함에 따라 역학적 특성은 감소하는 경향을 보였으며. 또한, 압축 강도와 초음파 속도의 상관관계 분석 결과 상관계수(R2)는 NHT를 혼합한 콘크리트의 경우 약 0.95로 높은 관계성을 보였다.

플라이애쉬를 혼합한 재생골재 콘크리트의 강도 및 동결융해 특성 (Strength and Freezing-Thawing Properties of Recycled aggregate Concrete Mixed Fly Ash)

  • 구봉근;류택은;이재범;양승규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.241-244
    • /
    • 1999
  • This study is represented the strength and freeing-thawing properties of recycled aggregate concrete mixed fly ash by experiment. The experimental variables are the substitution ratio of recycled aggregate and the mixing ratio of fly-ash. For each specimens, there were tested compressive strength and freeze-thaw resistance. It is able to find from the experimental result that the recycled aggregate concrete has good properties as general concrete on the compressive strength and the durability.

  • PDF

규불화수소산 처리 시멘트 슬러지를 사용한 모르타르의 물성 및 방수 특성 (Physical and Waterproof Properties of Mortar Using Cement Sludge Treated with Hydrofluosilicic Acid)

  • 김승문;이병기;김도수;노재성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표회 논문집(I)
    • /
    • pp.76-81
    • /
    • 1998
  • The physical properties of cement sludge treated with hydrofluosilicic acid were investigated. The compressive strength of cement mortar substituted cement sludge was decreased than that of OPC(ordinary portland cement) mortar. Cement sludge, for improving its physical properties, was treated with hydrofluosilicic acid. And compressive strength of cement mortar substituted TCS was greatly improved than that of OPC mortar. Particularly, cement mortar substituted TCS had the higher value in water-proofness than of OPC.

  • PDF

Mechanical Properties and Modeling of Amorphous Metallic Fiber-Reinforced Concrete in Compression

  • Dinh, Ngoc-Hieu;Choi, Kyoung-Kyu;Kim, Hee-Seung
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권2호
    • /
    • pp.221-236
    • /
    • 2016
  • The aim of this paper is to investigate the compressive behavior and characteristics of amorphous metallic fiber-reinforced concrete (AMFRC). Compressive tests were carried out for two primary parameters: fiber volume fractions ($V_f$) of 0, 0.3, 0.6 and 0.8 %; and design compressive strengths of 27, 35, and 50 MPa at the age of 28 days. Test results indicated that the addition of amorphous metallic fibers in concrete mixture enhances the toughness, strain corresponding to peak stress, and Poisson's ratio at high stress level, while the compressive strength at the 28-th day is less affected and the modulus of elasticity is reduced. Based on the experimental results, prediction equations were proposed for the modulus of elasticity and strain at peak stress as functions of fiber volume fraction and concrete compressive strength. In addition, an analytical model representing the entire stress-strain relationship of AMFRC in compression was proposed and validated with test results for each concrete mix. The comparison showed that the proposed modeling approach can properly simulate the entire stress-strain relationship of AMFRC as well as the primary mechanical properties in compression including the modulus of elasticity and strain at peak stress.