• Title/Summary/Keyword: compressive performance

Search Result 1,796, Processing Time 0.025 seconds

Effect of Mixing Method on Mechanical Properties of Fiber Reinforced Concrete

  • Kim, Hyun Wook;Lee, Chang Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.351-357
    • /
    • 2015
  • Fiber reinforced concrete (FRC) has been successfully used to enhance the flexural toughness of concrete. As fibers are randomly oriented in FRC, they sometimes produce clumps that reduce the mechanical performance, and a properly chosen mixing protocol can be a way to minimize this problem. In this research, the effects of mixing method on the mechanical properties of FRC were investigated. The compressive strength, flexural strength, and flexural toughness were measured using three different mixing methods. It was shown from the results that the compressive strength and peak flexural load were not affected by changes in mixing method. However, in terms of flexural toughness, the changes in mixing method clearly affected the flexural toughness of FRC. The truck-mixed FRC outperformed two pan-mixed FRCs.

Assessing Effects of Fine Aggregate Size on the Mechanical Properties of HPFRCCs Reinforced with PVA Fiber (PVA 섬유로 보강된 고인성 시멘트 복합체의 역학적 특성에 대한 잔골재 치수의 영향 평가)

  • Lee, Won-Suk;Byun, Jang-Bae;Yun, Hyun-Do;Jeon, Esther
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.657-660
    • /
    • 2006
  • HPFRCCs(High performance fiber reinforced cementitious composites) exhibit characteristics of strain harding and multiple crack. These lead to improvement in ductility, toughness, and deformation capacity under compressive and tensile stress. These properties of HPFRCCs are affected by type of fiber, size of sand. Furthermore these influence compress strength and flexural strength. Therefore experimental study on the mechanical properties of HPFRCCs using PVA fiber was carried out. In this paper, HPFRCCs made of PVA fiber were tested with size of sand, strength of concrete to evaluate characteristics of compressive strength and flexural strength.

  • PDF

Performance Evaluation of Trial Product of Amorphous Metallic Fiber Reinforced Porous Block Using High Volume Blast Furnace Slag Powder (고로슬래그를 대량 활용한 비정질 금속 섬유보강 투수블럭의 시제품 성능평가)

  • Kim, Do-Bin;Kim, Young-Uk;Kim, Sung-Jin;Kim, Hye Jeong;Jeong, Su Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.81-82
    • /
    • 2017
  • This study analyzed the compressive and flexural strength characteristics and the permeability coefficient of the trial product of amorphous metallic fiber reinforced porous block using high volume blast furnace slag powder.

  • PDF

A study on thermal properties of concrete using gang form coated with polyurethane (폴리우레탄 폼을 도포한 갱폼사용에 따른 콘크리트 온도이력특성)

  • Nam, Kyung-Yong;Won, Joon-Yuen;Kang, In-Seon;Jeon, Pan-Keun;Lee, Young-Do;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.11-12
    • /
    • 2011
  • This study examine Effect of Change of Compressive Strength of Concrete Members with Insulating Gang form on Temperature History of Concrete Positions. Test show, insulating gang forms differences and gang forms have 10℃ on peak point temperature of surface and Center if temperature history have 24Mpa by change of compressive strength. In addition, there have 14℃(16℃) on peak point temperature of surface and Center if temperature history have 40(60)Mpa. Therefore, insulating gang forms have an effect insulating performance.

  • PDF

Strength Properties of the Concrete with Low Carbon Cement and Rapidly Cooled Electric Arc Furnace Oxidizing Slag (급냉 전기로 산화슬래그와 저탄소시멘트를 적용한 콘크리트의 강도특성)

  • Sun, Joung-Soo;Choi, Sun-Mi;Sung, Jong-Hyun;Bok, Young-Jae;Choi, Duck-jin;Kim, jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.164-165
    • /
    • 2013
  • This study is on the performance evaluation of concrete being used the CaMg based low carbon cement(LCC) as a binder and the rapidly cooled electric arc furnace oxidizing slag(EAF slag) as a fine aggregate. When using the sand as a fine aggregate, compressive strength of the concrete using LCC, as a binder, was reduced 9% comparing with that of OPC concrete. However, when using the EAF slag as a fine aggregate, the compressive strength was increased by 9%. We found that combination LCC and EAF slag contribute to the strength properties of concrete.

  • PDF

Compressive Strength Properties of high strength concrete considering Adiabatic temperature rise of hot weather environment (서중환경의 단열온도상승 특성을 고려한 고강도 콘크리트의 압축강도 특성)

  • Lee, Eun Kyoung;Ham, Eun-Young;Koo, Kyung-Mo;Lee, Bo-Kyeong;Miyauchi, Hiroyuki;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.56-57
    • /
    • 2013
  • In this study, in regard to concrete considering variety of admixture content rate, we evaluated property of adiabatic temperature rise. By setting up high temperature history, we evaluated effect to compression strength property of high strength concrete by early high temperature history. As a result, early high temperature history accelerated Hydration reaction of cement and contribute early strength development but it didn't accomplish performance objective in long-term aged.

  • PDF

A Study on the Physical Property of concrete using Industrial by-product and Alkali Activators (산업부산물과 알칼리 활성제를 사용한 콘크리트의 물리적 특성에 관한 연구)

  • Lee, Sun-Kwan;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.54-55
    • /
    • 2013
  • Recently, The economic growth has increased carbon dioxide emissions. so, It is caused by social problem to environmental damage and human health due to global warming. Accordingly, The method solution is to the amount of cement and to use industrial by-product such as Blast furnace slag, Fly Ash, and Red-mud. Thus, The purpose of this study is to analyze the physical property of concrete with red-mud. So, this study carries out the basic performance test of concrete such as, air content, slump, and compressive strength. In this work test is conducted according to sequence of materials using concrete twin mixer.

  • PDF

Evaluation of Bamboo Reinforcements in Structural Concrete Member

  • Siddika, Ayesha;Al Mamun, Md. Abdullah;Siddique, Md. Abu Bakar
    • Journal of Construction Engineering and Project Management
    • /
    • v.7 no.4
    • /
    • pp.13-19
    • /
    • 2017
  • This study is based on the use and performance of bamboo reinforcements in construction of low-cost structures. This study investigated the physical and mechanical properties of bamboo reinforcements. Bamboo reinforced concrete beam specimens were tested with different reinforcement ratios and observed the load capacity, deflection and failure patterns. It was observed that, flexural strength of bamboo reinforced column is sufficient higher than plain cement concrete and comparable to steel reinforced concrete beams. Bamboo reinforced concrete columns with different reinforcement ratio also tested and observed the ultimate compressive strength and failure pattern. It found, all columns failed in a similar pattern due to crushing of concrete. According to cost analysis, bamboo reinforced beams and columns with moderate reinforcement ratio showed the best strength-cost ratio among plain cement concrete and steel reinforced concrete.

Fresh and hardened properties of concrete incorporating ground granulated blast furnace slag-A review

  • Patra, Rakesh Kumar;Mukharjee, Bibhuti Bhusan
    • Advances in concrete construction
    • /
    • v.4 no.4
    • /
    • pp.283-303
    • /
    • 2016
  • Several types of industrial byproducts are generated. With increased environmental awareness and its potential hazardous effects, the utilization of industrial byproducts in concrete has become an attractive alternative to their disposal. One such by-product is ground granulated blast furnace slag (GGBS), which is a byproduct of the smelting process carried out in the iron and steel industry. The GGBS is very effective in the design and development of high-strength and high-performance concrete. This paper reviews the effect of GGBS on the workability, porosity, compressive strength, splitting tensile strength, and flexural strength of concrete.

A simplified method to estimate the total cohesion of unsaturated soil using an UC test

  • Lin, Horn-Da;Wang, Chien-Chih;Wang, Xu-Hui
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.599-608
    • /
    • 2018
  • This study investigates the feasibility of adopting the results of the UC (unconfined compression) test to assess the total cohesion of the unsaturated soil. A series of laboratory tests were conducted on samples of unsaturated lateritic soils of northern Taiwan. Specifically, the unconfined compression test was combined with the pressure plate test to obtain the unconfined compression strength and its matric suction of the samples. Soil samples were first compacted at designated water content and then subjected to the wetting process for saturation and the subsequent drying process to its target suction using the apparatus developed by the authors. The correlations among the matric suction, the unconfined compression strength and the total cohesion were studied. As a result, a simplified method to estimate the total cohesion using the unconfined compressive strength is suggested. The calculated results compare reasonably with the unsaturated triaxial test results. Current results show good performance; however, further study is warranted.