• 제목/요약/키워드: compressive fracture strength

검색결과 367건 처리시간 0.026초

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • 제1권4호
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

Fracture energy and tension softening relation for nano-modified concrete

  • Murthy, A. Ramachandra;Ganesh, P.;Kumar, S. Sundar;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제54권6호
    • /
    • pp.1201-1216
    • /
    • 2015
  • This paper presents the details of size independent fracture energy and bi-linear tension softening relation for nano modified high strength concrete. Nano silica in powder form has been used as partial replacement of cement by 2 wt%. Two popular methods, namely, simplified boundary effect method of Karihaloo et al. (2003) and RILEM (1985) fracture energy with P-${\delta}$ tail correction have been employed for estimation of size independent fracture energy for nano modified high strength concrete (compressive strength ranges from 55 MPa to 72 MPa). It is found that both the methods gave nearly same values, which is an additional evidence that either of them can be employed for determination of size independent fracture energy. Bi-linear tension softening relation corresponding to their size independent fracture energy has been constructed in an inverse manner based on the concept of non-linear hinge from the load-crack mouth opening plots of notched three-point bend beams.

알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향 (Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes)

  • 김기태;서정
    • 한국세라믹학회지
    • /
    • 제28권10호
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

압축파괴에너지를 도입한 횡구속 고강도 콘크리트의 응력-변형률 모델 (Stress-strain Model of Laterally Confined High-strength Concrete with the Compressive Fracture Energy)

  • 홍기남;심원보
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.54-62
    • /
    • 2019
  • 본 논문에서는 압축파괴에너지를 이용하여 고강도 구속콘크리트에 대한 응력-변형률 모델을 제안하였다. 참고문헌[5]에서 저자가 실시한 압축실험에는 변형률 게이지를 부착한 아크릴 막대를 실험체의 중앙부에 매립하여 압축부재의 국부 변형률 측정을 시도하였다. 이 아크릴 막대를 이용한 국부 변형률 측정은 매우 효과적인 것으로 나타났다. 압축파괴영역길이는 아크릴 막대로부터 측정된 국부 변형률 분포에 기초하여 정의되었다. 구체적으로, 구속콘크리트의 국소파괴영역길이는 압축강도 발현시의 변형률 ${\varepsilon}_{cc}$의 2배 이상 변형률이 증가하는 영역으로 정의하였다. 또한, 동일한 횡구속압을 받는 압축부재에 흡수된 에너지양은 부재의 형상이나 크기에 관계없이 일정하다는 가정에서 압축 파괴에너지를 도입한 구속콘크리트의 응력-변형률 관계를 제안하였다. 본 연구에서 제안된 모델은 본 연구의 실험결과뿐만 아니라 타 연구자들의 실험결과를 대체적으로 잘 예측하는 것으로 나타났다.

FRP에서 와인딩 각도에 따른 압축강도의 시뮬레이션과 특성평가 (Simulation and Evaluation of Compressive Strength of FRP According to the Winding Orientation of Glass Fiber)

  • 박효열;강동필;한동희;김인성;표현동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 영호남학술대회 논문집
    • /
    • pp.250-253
    • /
    • 2000
  • The fiber orientation in FRP has a great effect on the strength of FRP because the strength of FRP mainly depends on the strength of fiber. Unidirectional FRP made by pultrusion method has comparatively lower compressive strength than tensile strength. Compressive strength of unidirectional FRP may be increased by filament winding layer which has tensile stress when compressive stress was loaded. In this study, compressive strength and stresses of FRP rods were simulated according to the winding orientation of glass fiber. Inner part of FRP was made unidirectionally by pultrusion method and outer part of FRP was made by filament winding method. Simulated value and real evaluated compressive strength were compared to investigate stresses which is prominent to the fracture of FRP. The shear stresses had a great effect on the strength of FRP although the stress of parallel direction of FRP was much higher.

  • PDF

미니 임플란트 직경에 따른 피로파절강도의 비교 연구 (Comparison of fatigue fracture strength by fixture diameter of mini implants)

  • 허유리;손미경;김희중;최한철;정재헌
    • 대한치과보철학회지
    • /
    • 제50권3호
    • /
    • pp.156-161
    • /
    • 2012
  • 연구 목적: 일체형의 o-ring type 미니 임플란트 고정체의 직경에 따른 파절강도의 차이를 비교하고자 한다. 연구 재료 및 방법: 길이 13mm의 one body o-ring type의 미니 임플란트(Dentis, Daegu, Korea)를 직경 2.0, 2.5, 3.0mm 각각 5개씩 준비하였다. Instron universal testing machine에 수직면에서 30도 각도로 샘플을 위치시키고 off-axis loading을 가하여 영구변형이 일어난 하중 값을 파절강도로 하고 5개의 시편의 평균을 구하여 각 직경에 따른 임플란트의 고정체의 파절강도를 비교하였다. 또한, 각 직경마다 3개의 시편을 준비하고 동적하중 피로 시험기를 이용하여, 파절이 발생할 때까지 파절강도의 80%, 60%, 40%의 loading을 가하여 파절되는 cycle수를 측정하여 각 직경의 피로 파절을 분석하였다. 추가적으로 총의치의 평균 저작력인 43 N의 하중을 가하여 파절되는 cycle 수를 측정하였다. 각 군간의 차이를 검증하기 위해서 일원분산분석(one-way ANOVA test)을 시행하였고, 통계처리는 SPSS ver.12 (SPSS Inc. Chicago, IL, USA) 을 이용하여 실시하였다. 결과: 직경 3.0mm의 미니 임플란트는 평균 $276.0{\pm}13.4N$의 압축력을 받았을 때 영구 변형이 일어났고 직경 2.5mm 미니 임플란트가 $149.0{\pm}6.1N$, 2.0mm 미니 임플란트가 $101.5{\pm}14.6N$일 때 영구 변형이 일어났다. 각 군간의 파절강도에는 유의한 차이가 있었다(P<.001). 총의치의 평균 저작력 하중에서 실시한 피로 파절 실험 결과, 세직경 모두 $5{\times}10^6cycle$까지 파절이 일어나지 않았다. 결론: 미니 임플란트의 정적 하중 하에서 최대 압축강도는 직경이 증가할수록 유의적으로 증가하였다. 최대 압축강도는 세 직경 모두 총의치의 평균 저작력 보다는 크나 최대 교합력보다는 직경 3.0mm에서만 크게 나타났다. 총의치의 평균 저작력 하중에서 실시한 피로 파절 실험 결과, 세 직경 모두 파절이 일어나지 않았다.

콘크리트 압축강도 예측식의 일반화 및 이들 식의 검증 (Generalization and its Verification of Concrete Compressive Strength Prediction Equation)

  • 최중철;이성태;양은익;김동용;손석호;문병석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.537-540
    • /
    • 2006
  • In previous study, the effect of specimen sizes and shapes on the compressive strength of concrete specimens was experimentally investigated based on fracture mechanics. In this study, the relationship between the cube compressive strength and the cylinder strength for representative specimen sizes was investigated by linear regression analyses. And, by reanalyzing the compressive strength prediction equations with specimen size and shape obtained in previous studies, the compressive strength prediction equations were generalized. In addition, its verification was investigated by comparing with the results obtained from other researchers.

  • PDF

쇼트피이닝재와 언피닝재의 피로균열진전거동 평가 (Evaluation on Fatigue Crack Propagation Behavior of The Shot-peened and un-peened Spring Steel)

  • 박경동;류찬욱
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.247-254
    • /
    • 2003
  • The lightness of components required in automobile and machinery industry is requiring high strength of components. In particular manufacturing process and new materials development for solving the fatigue fracture problem attendant upon high strength of suspension of automobile are actively advanced. In this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in high temperatures($100^{\circ}$, $150^{\circ}$, $180^{\circ}$) was investigated with considering fracture mechanics. So, we can obtain followings. (1)Compressive residual stress decreases in high temperature, that is, with increasing temperature. (2)The effect of compressive residual stress on fatigue crack growth behavior in high temperature increases below ${\Delta}K=17{\sim}19MPa$ (3)It was investigated by SEM that the constraint of compress residual stress for plastic zone of fatigue crack tip was decreased in high temperature as compared with room temperature.

  • PDF

Fracture behavior of fly ash concrete containing silica fume

  • Zhang, Peng;Gao, Ji-Xiang;Dai, Xiao-Bing;Zhang, Tian-Hang;Wang, Juan
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.261-275
    • /
    • 2016
  • Effect of silica fume on fresh properties, compressive strength at 28 days and fracture behavior of fly ash concrete composite were studied in this paper. Test results indicated that the fluidity and flowability of fly ash concrete composites decreased and fly ash concrete composite are more cohesive and appear to be sticky with the addition of silica fume. Addition of silica fume was very effective in improving the compressive strength at 28 days of fly ash concrete composite, and the compressive strength of fly ash concrete composite has a trend of increase with the increase of silica fume content. Results also indicated that all the fracture parameters of effective crack length, fracture toughness, fracture energy, the critical crack opening displacement and the maximum crack opening displacement of fly ash concrete composite decreased with the addition of silica fume. When the content of silica fume increased from 3% to 12%, these fracture parameters decreased gradually with the increase of silica fume content. Furthermore, silica fume had great effect on the relational curves of the three-point bending beam specimen. As the silica fume content increased from 3% to 12%, the areas surrounded by the three relational curves and the axes were becoming smaller and smaller, which indicated that the capability of concrete composite containing fly ash to resist crack propagation was becoming weaker and weaker.

석영 유리의 파괴 거동에 관한 연구(I) (A Study on the Fracture Behavior of Quartz Glass(I))

  • 최성대;정선환;정영관;김기만;홍영배
    • 한국산업융합학회 논문집
    • /
    • 제10권3호
    • /
    • pp.179-185
    • /
    • 2007
  • Quartz glass are used in semiconductor industries as the reaction furnace, wafer carrier and accessaries. During the process the quartz glass received compression by direct contact with other quartz glass ware and metal as the form of weight itself and vacuum pressure and fatigue by vibrations caused by process. Even as the other ceramic materials quartz glass have high compressive strength but often there happened crack and breakage of quartz glass resulted in a great damage in the process. In this paper investigation will be carried out on fracture behavior of quartz glass under local load to give guideline to prevent unintended fracture of quartz glass.

  • PDF