• Title/Summary/Keyword: compressive/flexural strength

Search Result 1,133, Processing Time 0.027 seconds

Monitoring the effects of silica fume, copper slag and nano-silica on the mechanical properties of polypropylene fiber-reinforced cementitious composites

  • Moosa Mazloom;Hasan Salehi;Mohammad Akbari-Jamkarani
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.2
    • /
    • pp.71-86
    • /
    • 2024
  • In this study, to reduce the amount of cement consumed in the production of cementitious composites, the effects of partial replacement of cement weight with nano-silica, silica fume, and copper slag on the mechanical properties of polypropylene fiber-reinforced cementitious composites are investigated. For this purpose, the effect of replacing cement weight by each of the aforementioned materials individually and in combination is studied. A total of 34 mix designs were prepared, and their compressive, tensile, and flexural strengths were obtained for each mix. Among the mix designs with one cement replacement material, the highest strength is related to the sample containing 2.5% nano-silica. In this mix design, the compressive, tensile, and flexural strengths improve by about 33%, 13%, and 15%, respectively, compared to the control sample. In the ones with two cement replacement materials, the highest strengths are related to the mix made with 10% silica fume along with 2% nano-silica. In this mix design, compressive, tensile, and flexural strengths increase by about 42%, 18%, and 20% compared to the control sample, respectively. Furthermore, in the mixtures containing three cement substitutes, the final optimal mix design for all three strengths has 15% silica fume, 10% copper slag, and 2% nano-silica. This mix design improves the compressive, tensile, and flexural strengths by about 57%, 23%, and 26%, respectively, compared to the control sample. Finally, two relationships have been presented that can be used to predict the values of tensile and flexural strengths of cementitious composites with very good accuracy only by determining the compressive strength of the composites.

Quality Evaluation of shotcrete due to Properties of Steel Fiber (강섬유 특성이 숏크리트 품질에 미치는 영향)

  • Ryu, Jong-Hyun;Kim, Dong-Weon;Jeon, Hyun-Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.673-676
    • /
    • 2006
  • Steel FibreReinforced Shotcrete(SFRS) is one of the main tunnel support along with the rock bolt during the excavation and after the completion of the tunnel. In the standard qualification of the SFRS defined by Korea Highway Corporation, 28 day core specimen has to meet the compressive strength of 19.6 MPa and over 90 % fibre contents. Furthermore, for the 28 days brick shaped specimen made by shooting, flexural strength should be over 4.4 MPa and flexural toughness ratio which can be calculated from flexural toughness factor has to meet more than 68% of flexural strength. In shotcrete, accelerating agent is added for the rapid strength development. Silicate and aluminate type agents are known to develop shotcrete strength rapidly, however, has such problem to degrade the middle and long term strength. Hence, using poly carboxylic super plasticizer, it was aimed to enhance the quality of the shotcrete with the lower water-cement ratio and the same level of workability. The present paper shows the part of the field test result and its analysis.

  • PDF

Effects of Template Size and Content on Porosity and Strength of Macroporous Zirconia Ceramics (기공형성제 크기와 함량이 다공질 지르코니아 세라믹스의 가공율과 강도에 미치는 영향)

  • Chae, Su-Ho;Kim, Young-Wook;Song, In-Hyuek;Kim, Hai-Doo;Bae, Ji-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.35-40
    • /
    • 2009
  • Using zirconia and poly (methyl methacrylate-coethylene glycol dimethacrylate) (PMMA) microbeads, macroporous zirconia ceramics were fabricated by a simple pressing method. Effects of template size and content on microstructure, porosity, and flexural and compressive strengths were investigated in the processing of the macroporous zirconia ceramics. Three different sizes of microbeads (8, 20, and $50{\mu}m$) were used as a template for fabricating the macroporous ceramics. The porosity increased with increasing the template size at the same template content. The flexural and compressive strengths were primarily influenced by the porosity rather than the template size. However, the strengths increased with decreasing the template size at the same porosity. By controlling the template size and content, it was possible to produce macroporous zirconia ceramics with porosities ranging from 58% to 75%. Typical flexural and compressive strength values at 60% porosity were ${\sim}30\;MPa$ and ${\sim}75\;MPa$, respectively.

Performance of Steel Fiber Reinforced Shotcrete using Alkali Free Based Accelerator (알칼리 프리계 급결제를 사용한 강섬유 보강 숏크리트의 성능 평가)

  • Baek, Chul-Woo;Park, Chan-Gi;Jun, Oun-Jung;Won, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.3
    • /
    • pp.65-72
    • /
    • 2004
  • Modern underground and tunnel works that the wet type shotcrete is getting widely designed and applied in a large scale project. Further to its applications, the needs of improving the performance of the shotcrete, such as new and developed additives and accelerators fur increasing the performance of shotcrete, become the most important issue in the field. The main objective of this study evaluated to performance of steel fiber reinforced shotcrete using alkali free based accelerator for the durability and high quality of shotcrete. The major test variables are accelerator type and its dosage. One type silicate based accelerator and one type aluminate based accelerator and one type alkali free based accelerator were used. The dosage of accelerators is determined by the manufactures and laboratory test condition. Compressive strength test results showed that the dosage of silicate and aluminate based accelerators caused reduction of mechanical properties of shotcrete. Compressive strength of alkali free based accelerator is more stable than of silicate and aluminate based accelerators. Also, according to the compressive strength and flexural test results, it was found that steel fiber reinforced shotcrete used alkali free based accelerator could attain significant improvement in the mechanical and flexural performance.

Development of Estimation of Model for Mechanical Properties of Steel Fiber Reinforced Concrete according to Aspect Ratio and Volume Fraction of Steel Fiber (강섬유의 형상비와 혼입률에 따른 강섬유 보강 콘크리트 보의 역학적 특성 추정 모형 개발)

  • Kwak, Kae-Hwan;Hwang, Hae-Sung;Sung, Bai-Kyung;Jang, Hwa-Sup
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.3
    • /
    • pp.85-94
    • /
    • 2006
  • Practially useful method of steel fiber for construction work is presented in this study. The most important purpose of this study is to develop a model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus, and splitting strength were performed with self-made cylindrical specimens of variable aspect ratios and volume fractions. The experiment showed that compressive strength was not in direct proportion to volume fraction which doesn't seem to have great influence over compressive strength. However, splitting strength showed almost direct proportion to aspect ratio and volume fraction. Improvement of optimal efficiency was confirmed when the aspect ratio was 70. Experiments on flexural strength, fracture energy, and characteristic length were carried out with self-manufactured beams with notch. As a result, increases of flexural strength, fracture energy, and characteristic length according to increase of volume fraction tend to be prominent when aspect ratio is 70. The steel fiber improves concrete to be more ductile and tough. Moreover, regression analysis was the performed and predictable model was developed after determining variables. With comparison and analysis of suggested estimated values and measured data, reliance of the model was verified.

Flexural and tensile properties of a glass fiber-reinforced ultra-high-strength concrete: an experimental, micromechanical and numerical study

  • Roth, M. Jason;Slawson, Thomas R.;Flores, Omar G.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.169-190
    • /
    • 2010
  • The focus of this research effort was characterization of the flexural and tensile properties of a specific ultra-high-strength, fiber-reinforced concrete material. The material exhibited a mean unconfined compressive strength of approximately 140 MPa and was reinforced with short, randomly distributed alkali resistant glass fibers. As a part of the study, coupled experimental, analytical and numerical investigations were performed. Flexural and direct tension tests were first conducted to experimentally characterize material behavior. Following experimentation, a micromechanically-based analytical model was utilized to calculate the material's tensile failure response, which was compared to the experimental results. Lastly, to investigate the relationship between the tensile failure and flexural response, a numerical analysis of the flexural experiments was performed utilizing the experimentally developed tensile failure function. Results of the experimental, analytical and numerical investigations are presented herein.

An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete (고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구)

  • Yoon, Eui-Sik;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.401-409
    • /
    • 2006
  • This study presents basic information on the mechanical properties and long-term deformations of high-strength steel fiber reinforced concrete(HSFRC). The Influence of steel fiber on modulus of elasticity, compressive, splitting tensile and flexural strength, and drying shrinkage and creep of HSFRC are investigated, and flexural fracture toughness is evaluated. Test results show that Test results show that the effect of steel fibers on the compressive strength is negligible, and the modulus of elasticity of HSFRC increased with the increase of fiber volume fraction. And the effect of fiber volume fraction($V_f$) and aspect ratio($l_f/d_f$) on tensile strength, flexural strength and toughness is extremely prominent. It is observed that the flexural deflection corresponded to ultimate load increased with the increase of $V_f$ and $l_f/d_f$, and due to fiber arresting cracking, the shape of the descending branch of load-deflection tends towards gently. Also, the effect of addition of various amounts of fiber on the creep and shrinkage is obvious. Especially, the effect of adding fibers to high-strength concrete is more pronounced in reducing the drying shrinkage than the creep.

Strength Properties of Permeable Block Using Basalt Waste Rock (현무암 폐석을 활용한 투수블록의 강도 특성)

  • Jeon, Eun-Yeong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.189-190
    • /
    • 2023
  • Environmental pollution problems are occurring in Jeju Island due to negative treatment of basalt waste. Measures for various approaches and utilization measures are needed to solve the problem of waste stones that occur during basalt processing. In this study, the Properties of permeable blocks with basalt were identified and the applicability and functionality as building materials were reviewed. This experiment is basic data for evaluating the functionality of the permeable block by manufacturing permeable blocks using basalt waste stones and analyzing flexural strength and compressive strength. The higher the basalt waste stone replacement rate, the lower the flexural strength and compressive strength, but it was judged that 20% of basalt waste stone replacement rate that satisfies the minimum flexural strength (4.0MPa) stipulated in KS F 4419 was appropriate. In addition, additional permeability coefficient and absorption rate experiments tended to increase as the basalt lung stone replacement rate increased. Therefore, it is judged that the permeable block using basalt waste stone is superior to the existing permeable block.

  • PDF

The Mechanical Property of Mortar According to the MgO Replacement of Low Melting Modified Sulfur (저융점 개질유황의 산화마그네슘 치환에 따른 모르타르의 역학적 특성)

  • Jung, Byeong-Yeol;Moon, Ji-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.97-98
    • /
    • 2012
  • This research examined the fundamental property of the MgO as the fundamental study that substituted the MgO in the low melting point modified sulfur mortar to examine the physical properties.In this research, the table floor, flexural strength test, and compressive strength test were performed. And as the replacement ratio increased, the floor showed the tendency to increase. And when being the replacement ratio 3%, the flexural strength and compressive strength made the high strength. In case of being substituted for over 5% they displayed the tendency that the intensity is degraded.

  • PDF

Strength and Durability Properties of Recycled Polymer Concrete Using Unsaturated Polyester Resin and Recycled Aggregates (불포화폴리에스터 수지와 재생골재를 이용한 재생 폴리머 콘크리트의 강도 및 내구 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.6
    • /
    • pp.97-103
    • /
    • 2009
  • This study was performed to evaluate the strength and durability properties of recycled polymer concrete using unsaturated polyester resin and recycled aggregates. Unsaturated polyester resin, natural and recycled aggregates and fly ash were used. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes (5-10 and 5-25 mm) and unit binder contents (10% and 12%). Tests for the compressive and flexural strength, freezing and thawing and durability for 20% sulfuric solution were performed. The compressive and flexural strength of recycled polymer concrete were in the range of 85~97 MPa and 17.9~20.8 MPa, respectively. The strengths of recycled polymer concrete using recycled aggregate have similar or slightly decreased compared to polymer concrete using natural aggregate. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of recycled polymer concrete were in the range of 0.13~1.42% and 94~99, respectively.