Acknowledgement
This work was supported by Shahid Rajaee Teacher Training University under grant number 5973/70.
References
- Abna, A. and Mazloom, M. (2022), "Flexural properties of fiber reinforced concrete containing silica fume and nano-silica", Mater. Lett., 316, 132003. https://doi.org/10.1016/j.matlet.2022.132003.
- ACI 318-14 (2015), Building code requirements for structural concrete and commentary on building code requirements for structural concrete, American Concrete Institute.
- Afzali-Naniz, O. and Mazloom, M. (2019), "Assessment of the influence of micro-and nano-silica on the behavior of self-compacting lightweight concrete using full factorial design", Asian J. Civil Eng.. 20(1), 57-70. https://doi.org/10.1007/s42107-018-0088-2.
- Amiri, M.M., Adabi, M., Darvishan, E. and Armanpour, A.H. (2022), "Investigation of effect of size and content of nano/SiO2 on the strength and durability of RCC in freezing-thawing cycles", Sharif J. Civil Eng., 38.2(1.2), 145-154. https://doi.org/10.24200/J30.2021.58139.2958.
- ASTM-C494 (2001), Standard specification for chemical admixtures for concrete, American Society of Testing Materials
- ASTM-C496 (2002), Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM International, West Conshohocken, PA, USA.
- Aydin, A.C. (2007), "Self compactability of high volume hybrid fiber reinforced concrete", Constr. Build. Mater., 21(6), 1149-1154. https://doi.org/10.1016/j.conbuildmat.2006.11.017.
- BSI-12390 (2001), BS EN 12390- Part 3: Testing hardened concrete: Compressive strength of test specimens, BSI, London, UK.
- ASTM-C1609 (2019), Standard test method for flexural performance of fiber-reinforced concrete (Using beam with third-point loading), ASTM International, West Conshohocken, PA, USA.
- Dos Anjos, M., Sales, A. and Andrade, N. (2017), "Blasted copper slag as fine aggregate in Portland cement concrete", J. Environ. Management, 196, 607-613. https://doi.org/10.1016/j.jenvman.2017.03.032.
- Edwin, R.S., Gruyaert, E. and De Belie, N. (2022), "Valorization of secondary copper slag as aggregate and cement replacement in ultra-high performance concrete", J. Build. Eng., 54, 104567. https://doi.org/10.1016/j.jobe.2022.104567.
- Elahi, A., Basheer, P., Nanukuttan, S. and Khan, Q. (2010), "Mechanical and durability properties of high performance concretes containing supplementary cementitious materials", Constr. Build. Mater., 24(3), 292-299. https://doi.org/10.1016/j.conbuildmat.2009.08.045.
- Feng, Y., Yang, Q., Chen, Q., Kero, J., Andersson, A., Ahmed, H., Engstrom, F. and Samuelsson, C. (2019), "Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO", J. Cleaner Product., 232, 1112-1120. https://doi.org/10.1016/j.jclepro.2019.06.062.
- Gao, S., Tian, W., Wang, L., Chen, P., Wang, X. and Qiao, J. (2010), Comparison of the mechanics and durability of hybrid fiber reinforced concrete and frost resistant concrete in bridge deck pavement, ICCTP 2010: Integrated Transportation Systems: Green, Intelligent, Reliable. https://doi.org/10.1061/41127(382).
- Ghalehnovi, M., Rakhshanimehr, M. and Khodabakhshian, A. (2022), "The effect of waste marble powder and silica fume on the mechanical, environmental and economic performance of concrete", Sharif J. Civil Eng., 37.2(4.1), 33-47. https://doi.org/10.24200/J30.2021.56505.2834.
- Gideon, A.M. and Milan, R. (2021), "Effects of nitinol on the ductile performance of ultra high ductility fibre reinforced cementitious composite", Case Studies in Constr. Mater., 15, e00582. https://doi.org/10.1016/j.cscm.2021.e00582.
- Huang, K. (2001), "Use of copper slag in cement production", Sichuan Cement, 4, 25-27.
- Jalal, M., Mansouri, E., Sharifipour, M. and Pouladkhan, A.R. (2012), "Mechanical, rheological, durability and microstructural properties of high performance self-compacting concrete containing SiO2 micro and nanoparticles", Mater. Design, 34, 389-400. https://doi.org/10.1016/j.matdes.2011.08.037.
- Kakooei, S., Akil, H.M., Jamshidi, M. and Rouhi, J. (2012), "The effects of polypropylene fibers on the properties of reinforced concrete structures", Constr. Build. Mater., 27(1), 73-77. https://doi.org/10.1016/j.conbuildmat.2011.08.015.
- Kashyap, V.S., Sancheti, G. and Yadav, J.S. (2023), "Durability and microstructural behavior of nano Silica-marble dust concrete", Cleaner Mater., 7, 100165. https://doi.org/10.1016/j.clema.2022.100165.
- Kong, D., Su, Y., Du, X., Yang, Y., Wei, S. and Shah, S.P. (2013), "Influence of nano-silica agglomeration on fresh properties of cement pastes", Constr. Build. Mater., 43, 557-562. https://doi.org/10.1016/j.conbuildmat.2013.02.066.
- Le Hoang, A. and Fehling, E. (2017), "Influence of steel fiber content and aspect ratio on the uniaxial tensile and compressive behavior of ultra high performance concrete", Constr. Build. Mater., 153, 790-806. https://doi.org/10.1016/j.conbuildmat.2017.07.130.
- Li, L., Huang, Z., Zhu, J., Kwan, A. and Chen, H. (2017), "Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar", Constr. Build. Mater., 140, 229-238. https://doi.org/10.1016/j.conbuildmat.2017.02.115.
- Lim, S., Lee, W., Choo, H. and Lee, C. (2017), "Utilization of high carbon fly ash and copper slag in electrically conductive controlled low strength material", Constr. Build. Mater., 157, 42-50. https://doi.org/10.1016/j.conbuildmat.2017.09.071.
- Mardani-Aghabaglou, A., Tuyan, M., Yilmaz, G., Arioz, O. and Ramyar, K. (2013), "Effect of different types of superplasticizer on fresh, rheological and strength properties of self-consolidating concrete", Constr. Build. Mater., 47, 1020-1025. https://doi.org/10.1016/j.conbuildmat.2013.05.105.
- Massana, J., Reyes, E., Bernal, J., Leon, N. and Sanchez-Espinosa, E. (2018), "Influence of nano-and micro-silica additions on the durability of a high-performance self-compacting concrete", Constr. Build. Mater., 165, 93-103. https://doi.org/10.1016/j.conbuildmat.2017.12.100.
- Mazaheripour, H., Ghanbarpour, S., Mirmoradi, S. and Hosseinpour, I. (2011), "The effect of polypropylene fibers on the properties of fresh and hardened lightweight self-compacting concrete", Constr. Build. Mater., 25(1), 351-358. https://doi.org/10.1016/j.conbuildmat.2010.06.018.
- Mazloom, M., Allahabadi, A. and Karamloo, M. (2017), "Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC", Adv. Concrete Constr., 5(6), 587-611. https://doi.org/10.12989/acc.2017.5.6.587.
- Mazloom, M., Karimpanah, H. and Karamloo, M. (2020), "Fracture behavior of monotype and hybrid fiber reinforced self-compacting concrete at different temperatures", Adv. Concrete Constr., 9(4), 375-386. https://doi.org/10.12989/acc.2020.9.4.375.
- Mazloom, M. and Mirzamohammadi, S. (2021), "Fracture of fibre-reinforced cementitious composites after exposure to elevated temperatures", Mag. Concrete Res., 73(14), 701-713. https://doi.org/10.1680/jmacr.19.00401.
- Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete, 15(6), 935-950. https://doi.org/10.12989/cac.2015.15.6.935.
- Mazloom, M. and Salehi, H. (2018), The relationship between fracture toughness and compressive strength of self-compacting lightweight concrete, IOP Publishing. https://doi.org/10.1088/1757-899X/431/6/062007.
- Mazloom, M., Salehi, H., Gholipour, M., Akbari-Jamkarani, M. and Afzali, F. (2022), A Comprehensive Study of the Effects of Copper Slag on the Fresh and Hardened Properties of Different Cementitious Composites, Practice Periodical on Structural Design and Construction, 27(3), 05022003. https://doi.org/10.1061/(ASCE)SC.1943-5576.00007.
- Mazloom, M., Soltani, A., Karamloo, M., Hassanloo, A. and Ranjbar, A. (2018), "Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete", Adv. Mater. Res., 7(1), 45-72. https://doi.org/10.12989/amr.2018.7.1.045.
- Murari, K., Siddique, R. and Jain, K. (2015), "Use of waste copper slag, a sustainable material", J. Mater. Cycles Waste Management, 17(1), 13-26. https://doi.org/10.1007/s10163-014-0254-x.
- Nili, M. and Ehsani, A. (2015), "Investigating the effect of the cement paste and transition zone on strength development of concrete containing nanosilica and silica fume", Mater. Design, 75, 174-183. https://doi.org/10.1016/j.matdes.2015.03.024.
- Saha, S., Rajasekaran, C. and Vinay, K. (2017). "Use of concrete wastes as the partial replacement of natural fine aggregates in the production of concrete", Proceedings of the Global Civil Engineering Conference. https://doi.org/10.1007/978-981-10-8016-6_32.
- Salehi, H. and Mazloom, M. (2018), "Experimental and numerical studies of crack propagation in self-compacting lightweight concrete", Modares Mech. Eng., 18(6), 144-155.
- Salehi, H. and Mazloom, M. (2019), "Effect of magnetic-field intensity on fracture behaviors of self-compacting lightweight concrete", Mag. Concrete Res., 71(13), 665-679. https://doi.org/10.1680/jmacr.17.00418.
- Salehi, H. and Mazloom, M. (2019), "Opposite effects of ground granulated blast-furnace slag and silica fume on the fracture behavior of self-compacting lightweight concrete", Constr. Build. Mater., 222, 622-632. https://doi.org/10.1016/j.conbuildmat.2019.06.183.
- Salehi, H. and Mazloom, M. (2021), "Studying the effect of silica fume on the fracture toughness and fracture energy of self-compacting lightweight concrete", J. Civil Environ. Eng., 53(1), 139-151. DOI: https://doi.org/10.22034/JCEE.2021.43557.1985.
- Scrivener, K.L. and Kirkpatrick, R.J. (2008), "Innovation in use and research on cementitious material", Cement Concrete Res., 38(2), 128-136. https://doi.org/10.1016/j.cemconres.2007.09.025.
- Shajil, N., Srinivasan, S. and Santhanam, M. (2013), "Self-centering of shape memory alloy fiber reinforced cement mortar members subjected to strong cyclic loading", Mater. Struct., 46(4), 651-661. https://doi.org/10.1617/s11527-012-9923-1.
- Tangtakabi, A., Ramesht, M.H., Golsoorat Pahlaviani, A. and Pourrostam, T. (2022), "Optimum use of micro silica in reducing corrosion reinforcing steel of marine concrete structures", Amirkabir J. Civil Eng., 54(8), 2953-2968. https://doi.org/10.22060/CEEJ.2022.18954.7008.
- Tiwary, A.K. and Bhatia, S. (2022), "A study incorporating the influence of copper slag and fly ash substitutions in concrete", Mater. Today: Proceedings, 48, 1476-1483. https://doi.org/10.1016/j.matpr.2021.09.293.
- van Zijl, G.P., Wittmann, F.H., Oh, B.H., Kabele, P., Toledo Filho, R.D., Fairbairn, E.M., Slowik, V., Ogawa, A., Hoshiro, H. and Mechtcherine, V. (2012), "Durability of strain-hardening cement-based composites (SHCC)", Materials and structures. 45(10), 1447-1463. https://doi.org/10.1617/s11527-012-9845-y.
- Wang, Z., Zhang, T. and Zhou, L. (2016), "Investigation on electromagnetic and microwave absorption properties of copper slag-filled cement mortar", Cement Concrete Compos., 74, 174-181. https://doi.org/10.1016/j.cemconcomp.2016.10.003.
- Yu, K.Q., Yu, J.T., Dai, J.G., Lu, Z.D. and Shah, S.P. (2018), "Development of ultra-high performance engineered cementitious composites using polyethylene (PE) fibers", Constr. Build. Mater., 158, 217-227. https://doi.org/10.1016/j.conbuildmat.2017.10.040.