• Title/Summary/Keyword: compression parameters

Search Result 1,053, Processing Time 0.023 seconds

Elastic Critical Laod of Tapered Columns (단순지지 변단면 압축재의 임계하중)

  • 홍종국;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.252-259
    • /
    • 1999
  • One of the most important factors for a proper design of a slender compression member may be the exact determination of the elastic critical load of that member. In the cases of non-prismatic compression member, however, there are times when the exact critical load becomes impossible to determinate if one relies on the neutral equilibrium method or energy principle. Here in this paper, the approximate critical loads of symmetrically or non-symmetrically tapered members are computed by finite element method. The two parameters considered in this numerical analysis are the taper parameter, $\alpha$ and the sectional property parameters, m. The computed results for each sectional property parameter, m are presented in an algebraic equation which agrees with those by F.E.M The algebraic equation can be easily used by structural engineers, who are engaged in structural analysis and design of non-prismatic compression member.

  • PDF

Static and dynamic behaviour of square plates with inhomogeneity subjected to non-uniform edge loading (compression and tension)

  • Prabhakara, D.L.;Datta, P.K.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.2
    • /
    • pp.163-176
    • /
    • 1996
  • The tension and compression buckling behaviour of a square plate with localized zones of damage and subjected to non-uniform loading is studied using a finite element analysis. The influence of parameters such as position of damage, extent of damage, size of damage and position of load on instability behaviour are discussed. The dynamic behaviour for certain load and damage parameters are also presented. It is observed that the presence of damage has a marked effect on the static buckling load and natural frequency of the plate.

A Study on the Knite line for press Molding of Long Fiber Reinforced polymeric (장섬유강화 고분자 복합판의 프레스 성형에 있어서 니트라인에 관한 연구)

  • 조선형;이국웅;안종윤;윤성윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.115-123
    • /
    • 2001
  • In recent years, compression molding of long fiber-reinforced thermoplastics has been increased in commercial aspects. In the process of compression molding of composites, the flow analysis must be developed in order to accurately predict the finished part properties as a function of the molding process parameters. In this model FRTP is assumed to be nonisothermal fluid, which has different viscosities in extensional and in shear. For verification of the model, the formation of a knit line in the L-shaped parts is compared with that of experiments results. In this paper we will discuss the effects of extensional & shear viscosity ratio and slip parameter $\alpha$ on the other modle fill-ing parameters.

  • PDF

Structural Performance of Shearwall with Sectional Shape in Wall-type Apartment Buildings (단면현상에 따른 벽식구조 전단벽의 구조성능 평가)

  • 한상환;오영훈;오창학;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.4
    • /
    • pp.3-14
    • /
    • 2000
  • Structural performance of the walls subjected to lateral load reversals depends on various parameters such as loading history, sectional shape, reinforcement, lateral confinement, aspect ratio, axial compression, etc. Thus, the performance of the shearwall for wall-type apartment should be evaluated properly considering above parameters. This study investigates the effect of sectional shape on the structural performance of the wall. Sectional shape of the specimen is rectangular, barbell and T. Based on this experimental results, all specimens behaved as ductile fashion and failed by concrete crushing of the compression zone. Deformation index of those specimens evaluated better than 3 of ductility ratio, and 1.5% of deformability specified by seismic provision. Moreover, the performance of the rectangular shaped specimen, whose compression zone was confined with U-bar and cross tie, was as good as the barbell shaped specimen. Therefore, if we considered construction practice such as workmanship and detailing, shearwall with rectangular section may be more economical lateral load resisting system.

Densification Behavior of Nanocrystalline Ceramic Powder under Cold Compaction (냉간 압축 하에서 나노 세라믹 분말의 치밀화 거동)

  • Lee Sung-Chul;Kim Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1242-1248
    • /
    • 2006
  • Densification behavior of nanocrystalline titania powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. Lee and Kim proposed the Cap model by developing the parameters involved in the yield function of general Cap model and volumetric strain evolution under cold isostatic pressing. The parameters in the Drucker/Prager Cap model and the proposed model were obtained from experimental data under triaxial compression. Finite element results from the models were compared with experimental data for densification behavior of nanocystalline ceramic powder under cold isostatic pressing and die compaction. The proposed model agreed well with experimental data under cold compaction, but the Drucker/Prager Cap model underestimated at the low density range. Finite element results, also, show the relative density distribution of nanocystalline ceramic powder compacts is severe compared to conventional micron powder compacts with the same averaged relative density.

Energy dissipation demand of compression members in concentrically braced frames

  • Lee, Kangmin;Bruneau, Michel
    • Steel and Composite Structures
    • /
    • v.5 no.5
    • /
    • pp.345-358
    • /
    • 2005
  • The response of single story buildings and other case studies are investigated to observe trends in response and to develop a better understanding of the impact of some design parameters on the seismic response of CBF. While it is recognized that many parameters have an influence on the behavior of braced frames, the focus of this study is mostly on quantifying energy dissipation in compression and its effectiveness on seismic performance. Based on dynamic analyses of single story braced frame and case studies, it is found that a bracing member designed with bigger R and larger KL/r results in lower normalized cumulative energy, i.e., cumulative compressive energy normalized by the corresponding tensile energy (${\sum}E_C/E_T$), in both cases.

Creep analysis of CFT columns subjected to eccentric compression loads

  • Han, Bing;Wang, Yuan-Feng;Wang, Qian;Zhang, Dian-Jie
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.291-304
    • /
    • 2013
  • By considering the creep characteristics of concrete core under eccentric compression, a creep model of concrete filled steel tubes (CFT) columns under eccentric compressive loads is proposed based on the concrete creep model B3. In this proposed model, a discrete element method is introduced to transform the eccentric loading into axial loading. The validity of the model is verified by comparing the predicting results with the published creep experiments results on CFT specimens under compressive loading, together with the predicting values based on other concrete creep models, such as ACI209, CEB90, GL2000 and elastic continuation and plastic flow theory. By using the proposed model, a parameters study is carried out to analysis the effects of practical design parameters, such as concrete mix (e.g. water to cement ratio, aggregate to cement ratio), steel ratio and eccentricity ratio, on the creep of CFT columns under eccentric compressive loading.

Fabrication of Refractive/Diffractive Micro-Optical Elements Using Micro-Compression Molding (마이크로 압축성형 공정을 이용한 굴절/회절용 마이크로 광부품 성형)

  • Moon S.;Ahn S.;Kang S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.200-203
    • /
    • 2001
  • Micromolding methods such as micro-injection molding and micro-compression molding are most suitable for mass production of plastic micro-optics with low cost. In this study, plastic micro-optical components, such as refractive microlenses and diffractive optical elements(DOEs) with various grating patterns, were fabricated using micro-compression molding process. The mold inserts were made by ultrapricision mechanical machining and silicon etching. A micro compression molding system was designed and developed. Polymer powders were used as molded materials. Various defects found during molding were analyzed and the process was optimized experimentally by controlling the governing process parameters such as histories of mold temperature and compression pressure. Mim lenses of hemispherical shape with $250{\mu}m$ diameter were fabricated. The blazed and 4 stepped DOEs with $24{\mu}m$ pitch and $5{\mu}m$ depth were also fabricated. Optical and geometrical properties of plastic molded parts were tested by interferometric technique.

  • PDF

ECG data compression using wavelet transform and adaptive fractal interpolation (웨이브렛 변환과 적응 프랙탈 보간을 이용한 심전도 데이터 압축)

  • 윤영노;이우희
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.45-61
    • /
    • 1996
  • This paper presents the ECG data compression using wavelet transform (WT) and adaptive fractal interpolation (AFI). The WT has the subband coding scheme. The fractal compression method represents any range of ECG signal by fractal interpolation parameters. Specially, the AFI used the adaptive range sizes and got good performance for ECG data cmpression. In this algorithm, the AFI is applied into the low frequency part of WT. The MIT/BIH arhythmia data was used for evaluation. The compression rate using WT and AFI algorithm is better than the compression rate using AFI. The WT and AFI algorithm yields compression ratio as high as 21.0 wihtout any entropy coding.

  • PDF

Numerical Study on The Injection-Compression Molding Characteristic of High Viscosity Plastic Fluids (고점도 유동장이 사출-압축 성형에 미치는 영향)

  • Park, Gyun-Myoung;Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.18 no.5
    • /
    • pp.345-350
    • /
    • 2002
  • Recently, as the development of manufacturing technique on SMC(sheet molding compound), various numerical and experimental approaches to injection and compression molding have been investigated. Injection and compression molding, however, has so various cases with complicated boundary condition that it is difficult to analyze mold characteristics precisely. In addition, since a slight change in process variables can significantly change the resulting mold thickness, a proper design is important to compression molding process. Therefore, in this study, the effects of various parameters on compression molding process have been investigated using FEM(finite element method) to formulate the melt front advancement during the mold filling process. To verify the results of present analysis, they are compared with those of reference. The results show a strong effect of initial charge volume, injection time and pressure as a result of variations in the rectangular charge shape.