• Title/Summary/Keyword: composite suitability

Search Result 59, Processing Time 0.027 seconds

A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage (황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구)

  • Adnin, Raihana Jannat;Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF

Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection

  • Sarikokba, Sarikokba;Tiwari, Diwakar;Prasad, Shailesh Kumar;Kim, Dong Jin;Choi, Suk Soon;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.237-257
    • /
    • 2020
  • The role of nano bio-composites precursor to chitosan are innumerable and are known for having different applications in various branches of physical sciences. The application to the sensor development is relatively new, where only few literature works are available to address the specific and critical analysis of nanocomposites in the subject area. The bio-composites are potential and having greater affinity towards the heavy metals and several micro-pollutants hence, perhaps are having wider implications in the low or even trace level detection of the pollutants. The nano-composites could show good selectivity and suitability for the detection of the pollutants as they are found in the complex matrix. However, the greater challenges are associated using the bio-composites, since the biomaterials are prone to be oxidized or reduced at an applied potential and found to be a hinderance for the detection of target pollutants. In addition, the materials could proceed with a series of electrochemical reactions, which could produce different by-products in analytical applications, resulting in several complex phenomena in electrochemical processes. Therefore, this review addresses critically various aspects of an evaluation of nano bio-composite materials in the electrochemical detection of heavy metals and micro-pollutants from aqueous solutions.

A simple test method to assess slump flow and stability of self-compacting concrete

  • Bouziani, Tayeb
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • Establishment of test methods to assess the fresh properties of self-compacting concrete (SCC) are required to ensure the homogeneity in fresh and hardened states. This paper discusses the suitability of a simple test method for assessing the slump flow and stability of SCC by testing on self-compacting mortar (SCM) fraction. The proposed test method aims at investigating slump flow diameter test and sieve stability test of SCC by testing SCM fraction with a plunger penetration apparatus. A central composite modeling design was performed to evaluate the effects of water/cement ratio (W/C), superplasticizer dosage (SP) and powder marble content (MP) on slump flow diameter, stability and plunger penetration test of fresh SCC. The responses of the derived statistical models are slump flow (Sf), sieve stability (S) and plunger penetration (P). Relationships obtained in this study show acceptable correlations between plunger penetration test value and slump flow diameter test results and stability. It should note that the developed relationships are very useful to predict slump flow diameter and stability of studied SCC mixtures by carrying out a simple plunger penetration test on its mortar, which can save labour and time in laboratory experiments.

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

A comprehensive study on active Lamb wave-based damage identification for plate-type structures

  • Wang, Zijian;Qiao, Pizhong;Shi, Binkai
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.759-767
    • /
    • 2017
  • Wear and aging associated damage is a severe problem for safety and maintenance of engineering structures. To acquire structural operational state and provide warning about different types of damage, research on damage identification has gained increasing popularity in recent years. Among various damage identification methods, the Lamb wave-based methods have shown promising suitability and potential for damage identification of plate-type structures. In this paper, a comprehensive study was presented to elaborate four remarkable aspects regarding the Lamb wave-based damage identification method for plate-type structures, including wave velocity, signal denoising, image reconstruction, and sensor layout. Conclusions and path forward were summarized and classified serving as a starting point for research and application in this area.

CLASS II COMPOSITE RESIN RESTORATION USING ORTHODONTIC BANDS (교정용 밴드를 이용한 구치부 2급 와동의 복합레진 수복)

  • Park, Sung-Dong;Park, Ki-Tae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.13-17
    • /
    • 2005
  • Children and teenagers have a higher frequency of proximal surface caries in the posterior teeth than adults. For proximal restoration, class II amalgam or stainless steel crown has been widely used in the past, however composite resin restoration is getting ore popular due to it's superior cosmetic appearance. When applying composite resin on proximal area, various types of matrix bands can be utilized according to the operator's reference or skill. Such bands have several clinical effects including suitability for proximal margin, reduction of micro-leakage, moisture-control against saliva and ease finishing and polishing. In this case report, orthodontic bands were utilized instead of matrix bands as a remedy for proximal restorations in both primary and permanent teeth and their clinical advantages are as follows. 1. Orthodontic bands showed superior marginal adaptation compared to conventional matrix bands and moisture-control against saliva was excellent. 2. While applying composite resin, deformation of restoration material was estimated to be insignificant due to he rigidity of the orthodontic bands. 3. Natural tooth contour of the orthodontic bands facilitates to reproduce proximal tooth contour of the restoration. 4. In general, pediatric dentists are accustomed to applying orthodontic bands and this may allow pediatric dentists to make proximal composite restorations more efficiently than other dental specialists.

  • PDF

Development of Medical Resorbable Composite Materials Interposed in the Poly(glycolic acid) (Poly(glycolic acid)를 심선에 지닌 의료용 흡수성 복합재료의 개발)

  • Lee, Chan-Woo
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.228-232
    • /
    • 2007
  • This purpose of this study is to enhance the hydrolysis of poly (butylene succinate-co-L-lactate) (PBSL) and poly [(R) -3-hydroxybutylate] (PHB), to develop materials with advanced medical absorbability and environmental suitability. The first method involves increasing the bioabsorbability of poly (glycolic acid) (PGA) in the core of the fibrous complex, while the second method involves making a complex fiber containing PBSL and PHB in the outer layer for improving environmental degradability Improvement in the hydrolysis of PBSL and PHB due to glycolic acid occurs by hydrolytic behavior of PGA. The drawing supporting the resulting PBSL/PGA fiber was executed at $65^{\circ}C$, where the orientation is well arranged in crystal form. Obtaining a PHB/PGA complex fiber in the proper crystal orientation at $50^{\circ}C$ was not possible since the arranged crystal orientation was only identified in drawings from temperatures above $50^{\circ}C$. Also, it is necessary to execute a smooth surface to achieve an on-line drawing since unevenness occurs in the fibrous surface from an in-line drawing.

Numerical Investigations of Physical Habitat Changes for Fish induced by the Hydropeaking in the Downstream River of Dam (댐 하류 하천에서 발전방류로 인한 어류 물리서식처 변화 수치모의)

  • Kang, Hyeongsik;Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2B
    • /
    • pp.211-217
    • /
    • 2010
  • This paper presents numerical investigations of the physical habitat changes induced by the hydropeaking in the downstream river of dam. For the two-dimensional ecohydraulic simulations, River2D model is used. Pirami (Zacco platypus) is selected as the target fish for investigating the impact of the hydropeaking. For validation of the model, the water surface elevations are simulated with two different water discharges. The computed results are compared with field data in the literature, and the result shows that the model successfully simulates the water flows. The weight usable area (WUA) of Pirami with the life cycle and the composite suitability index with different water discharges are computed and discussed. The results show that habitat for Pirami appears to be best in the bend region downstream of the dam. The discharge of the maximum WUA for adult Pirami is computed to be about 9 $m^3/s$. Also, the WUA computed in a condition of hydropeaking during seven days are presented. The averaged discharge of the hydropeaking appears to be about 20% larger than the drought flow, but the WUA by the hydropeaking is computed to be 60-100% smaller. This result shows that the hydropeaking reduces quantity of habitat available to fish.

Local Buckling Strength of PFRP I-Shape Compression Members Obtained by LRFD Design Method and Closed-Form Solution (하중저항계수설계법 및 정밀해법에 의한 PFRP I형 단면 압축재의 국부좌굴강도)

  • Choi, Jin-Woo;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2014
  • Fiber reinforced polymeric plastic (FRP) materials have many advantages over conventional structural materials, i.e., high specific strength and stiffness, high corrosion resistance, right weight, etc. Among the various manufacturing methods, pultrusion process is one of the best choices for the mass production of structural plastic members. Since the major reinforcing fibers are placed along the axial direction of the member, this material is usually considered as an orthotropic material. However, pultruded FRP (PFRP) structural members have low modulus of elasticity and are composed of orthotropic thin plate components the members are prone to buckle. Therefore, stability is an important issue in the design of the pultruded FRP structural members. Many researchers have conducted related studies to publish the design method of FRP structures and recently, referred to the previous researches, pre-standard for LRFD of pultruded FRP structures is presented. In this paper, the accuracy and suitability of design equation for the local buckling strength of pultruded FRP I-shape compression members presented by ASCE are estimated. In the estimation, we compared the results obtained by design equation, closed-form solution, and experiments conducted by previous researches.

Resin Optimization for Manufacturing CFRP Hydrant Tanks for Fire Trucks (소방차용 CFRP 소화전 탱크제조를 위한 수지 최적화 연구)

  • Huh, Mong Young;Choi, Moon Woo;Yun, Seok Il
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.255-260
    • /
    • 2022
  • Lightweight hydrant tanks increase the amount of water that can be carried by fire trucks, resulting in longer water spray times during the initial firefighting process, which can minimize human and property damages. In this study, the applicability of carbon-fiber-reinforced polymer (CFRP) composites as a material for lightweight hydrant tanks was investigated. In particular, the resin for manufacturing CFRP hydrant tanks must meet various requirements, such as excellent mechanical properties, formability, and dimensional stability. In order to identify a resin that satisfies these conditions, five commercially available resins, including epoxy(KFR-120V), unsaturated polyesters(G-650, HG-3689BT, LSP8020), vinyl ester(KRF-1031) were selected as candidates, and their characteristics were analyzed to investigate the suitability for manufacturing a CFRP hydrant tank. Based on the analyses, KRF-1031 exhibited the most suitable properties for hydrant tanks. Particularly, CFRP with KRF-1031 exhibited successful results for thermal stability and elution tests.