References
- Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473-474, 619-641 (2014). https://doi.org/10.1016/j.scitotenv.2013.12.065
- N. Bolong, A. F. Ismail, M. R. Salim, and T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239, 229-246 (2009). https://doi.org/10.1016/j.desal.2008.03.020
- A. Joss, E. Keller, A. Alder, A. Gobel, C.S. McArdell, T. Ternes, and H. Siegrist, Removal of pharmaceuticals and fragrances in biological wastewater treatment, Wat. Res., 39, 3139-3152 (2005). https://doi.org/10.1016/j.watres.2005.05.031
- J. Lienert, T. Buerki, and B. I. Escher, Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine, Wat. Sci. Technol., 56(5), 87-96 (2007). https://doi.org/10.2166/wst.2007.560
- K. A. Landry and T. H. Boyer, Diclofenac removal in urine using strong-base anion exchange polymer resins, Wat. Res., 47, 6432-6444 (2013). https://doi.org/10.1016/j.watres.2013.08.015
- J. Barek, J. Fischer, T. Navratil, K. Peckova, B. Yosypchuk, and J. Zima Nontraditional electrode materials in environmental analysis of biologically active organic compounds, Electroanalysis, 19, 19-20 (2007).
- D. M. Quinn, Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev., 87, 955-979 (1987). https://doi.org/10.1021/cr00081a005
- A. Roda, P. Rauch, E. Ferri, S. Girotti, S. Ghini, G. Carrea, and R. Bovara, Chemiluminescent flow sensor for the determination of Paraoxon and Aldicarb pesticides, Anal. Chim. Acta., 294, 35-42 (1994). https://doi.org/10.1016/0003-2670(94)85043-7
- H. Xing, X. Wang, G. Sunb, X. Gao, S. Xu, and X. Wang, Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.), Environ. Toxicol. Pharmacol., 33, 233-244 (2012). https://doi.org/10.1016/j.etap.2011.12.014
- M. Kucka, K. Pogrmic-Majkic, S. Fa, S. S. Stojilkovic, and R. Kovacevic, Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4, Toxicol. Appl. Pharmacol., 265, 19-26 (2012). https://doi.org/10.1016/j.taap.2012.09.019
- K. Y. Lin and W. Chu, Simulation and quantification of the natural decay of a typical endocrine disrupting chemical Atrazine in an aquatic system, J. Hazard. Mater., 192, 1260-1266 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.042
- L. F. Delgado, P. Charles, K. Glucina, and C. Morlay, The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon - A review, Sci. Total Environ., 435-436, 509-525 (2012). https://doi.org/10.1016/j.scitotenv.2012.07.046
- M. Valko, H. Morris, and M. T. D. Cronin, Metals, toxicity and oxidative stress, Curr. Med. Chem., 12, 1161-1208 (2005). https://doi.org/10.2174/0929867053764635
- Zirlianngura, D. Tiwari, J.-H. Ha, and S.-M. Lee, Efficient use of porous hybrid materials in a selective detection of lead(II) from aqueous solutions: An electrochemical study, Metals, 7, 124 (2017). https://doi.org/10.3390/met7040124
- B. K. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosen. Bioelectron., 94, 443-455 (2017). https://doi.org/10.1016/j.bios.2017.03.031
- M. B. Gumpua, S. Sethuramanb, U. M. Krishnanb, and J. B. B. Rayappana, A review on detection of heavy metal ions in water - An electrochemical approach, Sens. Actuat. B, 213, 515-533 (2015). https://doi.org/10.1016/j.snb.2015.02.122
- D. Bagal-Kestwal, M. S. Karve, B. Kakade, and V. K. Pillai, Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity, Biosens. Bioelectron., 24, 657-664 (2008). https://doi.org/10.1016/j.bios.2008.06.027
- M. Kumar and A. Puri, A review of permissible limits of drinking water, Ind. J. Occupat. Environ. Med., 16, 1 (2012). https://doi.org/10.4103/0019-5278.99678
- T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, and Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks, Food Chem., 213, 306-312 (2016). https://doi.org/10.1016/j.foodchem.2016.06.091
- R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt, Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent, Anal. Chem., 87, 3535-3542 (2015). https://doi.org/10.1021/acs.analchem.5b00283
- V. N. Losev, O. V. Buyko, A. K. Trofimchuk, and O. N. Zuy, Silica sequentially modified with polyhexamethylene guanidine and arsenazo I for preconcentration and ICPOES determination of metals in natural waters. Micro Chem. J., 123, 84-89 (2015).
- Y. Yi, G. Zhu, C. Liu, Y. Huang, Y. Zhang, H. Li, J. Zhao, and S. Yao, A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem., 85, 11464-11470 (2013). https://doi.org/10.1021/ac403257p
- M. C. Rouget, Des substances amylacees dans les tissus des animaux, specialement des Articules (chitine). Comp. Rend., 48, 792-795 (1859).
- D. Raafat, K. von Bargen, A. Haas, and H.-G. Sahl, Insights into the mode of action of chitosan as an antibacterial compound, Appl. Environ. Microbiol., 74, 3764-3773 (2008). https://doi.org/10.1128/AEM.00453-08
- G. Crini and P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33, 399-447 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.001
- Lalchhingpuii, D. Tiwari, Lalhmunsiama, and S. M. Lee, Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium(II) and lead(II), Chem. Eng. J., 328, 434-444 (2017). https://doi.org/10.1016/j.cej.2017.07.053
- S. K. Shukla, A. K. Mishra, O. A. Arotiba, and B. B. Mamba, Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol., 59, 46-58 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.043
- J. K. F. Suh and H. W. T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomaterials, 21, 2589-2598 (2000). https://doi.org/10.1016/S0142-9612(00)00126-5
- P. Agrawal, G. J. Strijkers, and K. Nicolay, Chitosan-based systems for molecular imaging, Adv. Drug Delivery Rev., 62, 42-58 (2010). https://doi.org/10.1016/j.addr.2009.09.007
- Lalhmunsiama, Lalchhingpuii, B. P. Nautiyal, D. Tiwari, S. I. Choi, S.-H. Kong, and S.-M. Lee, Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic (V), J. Colloid Interf. Sci., 467, 203-212 (2016). https://doi.org/10.1016/j.jcis.2016.01.019
- B. Batra and C. S. Pundir, An amperometric glutamate biosensor based onimmobilization of glutamate oxidase onto carboxylated multiwalled carbonnanotubes/gold nanoparticles/chitosan composite film modified Au electrode, Biosens. Bioelectron., 47, 496-501 (2013). https://doi.org/10.1016/j.bios.2013.03.063
-
S. J. Ling, R. Yuan, Y. Q. Chai, and T. T. Zhang, Study on immunosensor basedon gold nanoparticles/chitosan and
$MnO_2$ nanoparticles composite mem-brane/Prussian blue modified gold electrode, Bioprocess Biosyst. Eng., 32, 407-414 (2009). https://doi.org/10.1007/s00449-008-0260-2 -
C. Lalhriatpuia, D. Tiwari, A. Tiwari, and S. M. Lee, Immobilized nanopillars-
$TiO_2$ in the efficient removal of micro-pollutants from aqueous solutions: Physico-chemical studies, Chem. Eng. J., 281, 782-792 (2015). https://doi.org/10.1016/j.cej.2015.07.032 -
D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, and M. d'Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/
$H_2O_2$ and ozone, Wat. Res., 38, 414-422 (2004). https://doi.org/10.1016/j.watres.2003.09.028 - Y. Zhang, S. Y. Geissen, and C. Gal, Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73, 1151-1161 (2008). https://doi.org/10.1016/j.chemosphere.2008.07.086
- J. M. Herrmann, Heterogeneous photocatalysis: Fundamentals and to the removal of various types of aqueous pollutants, Catal. Today, 53, 115-129 (1999). https://doi.org/10.1016/S0920-5861(99)00107-8
- C. Martinez, L. M. Canle, M. I. Fernandez, J. A. Santaballa, and J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials, Appl. Catal. B: Environ., 107, 110-118 (2011). https://doi.org/10.1016/j.apcatb.2011.07.003
- J. L. G. Oaks, M. Virani, M. Z. Watson, R. T. Meteyer, C. U. Rideout, B. A. Shivaprasad, H. L. Ahmed, S. Chaudhry, M. J. I. Arshad, M. Mahmood, S. Ali, and A. A. A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427, 630-633 (2004). https://doi.org/10.1038/nature02317
- A. C. Mehinto, E. M. Hill, and C. R. Tyler, Uptake and biological effects environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol., 44, 2176-2182 (2010). https://doi.org/10.1021/es903702m
- M. Goodarzian, M. A. Khalilzade, F. Karimi, V. K. Gupta, M. Keyvanfard, H. Bagheri, and M. Fouladger, Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode, J. Mol. Liq., 197, 114-119 (2014). https://doi.org/10.1016/j.molliq.2014.04.037
- M. Shalauddin, S. Akhter, S. Bagheri, M. S. A. Karim, N. A. Kadri, and W. J. Basirun, Immobilized copper ions on MWCNTS-chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution, Int. J. Hydro. Ener., 42, 1995-9960 (2017).
- A. R. Khaskheli, J. Fischer, J. Barek, V. Vyskocil, S. Muhammad, and I. Bhanger, Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode, Electrochim. Acta, 101, 238-242 (2013). https://doi.org/10.1016/j.electacta.2012.09.102
- A. E. Robinson, Martindale: The extra pharmacopoeia 27th edition, J. Pharm. Pharmacol., 29, 647-648 (1977). https://doi.org/10.1111/j.2042-7158.1977.tb11428.x
- H. Yin, K. Shang, X. Meng, and S. Ai, Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide, Microchim. Acta, 175, 39-46 (2011). https://doi.org/10.1007/s00604-011-0652-x
- S. J. R. Prabakar and S. S. Narayanan, Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode, Talanta, 72, 1818-1827 (2007). https://doi.org/10.1016/j.talanta.2007.02.015
- S. Akhter, W. J. Basirun, Y. Alias, M. R. Johan, S. Bagheri, M. Shalauddin, M. Ladan, and N. S. Anuar, Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - chitosan thin film, Anal. Biochem., 551, 29-36 (2018). https://doi.org/10.1016/j.ab.2018.05.004
- C. E. Gattullo, H. Bahrs, C. E. W. Steinberg, and E. Loffredo, Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter, Sci. Total Environ., 416, 501-506 (2012) https://doi.org/10.1016/j.scitotenv.2011.11.033
- Thanhmingliana, S. M. Lee, and D. Tiwari, Use of hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv., 4, 43921-43930 (2014).
- A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving, Endocrinology, 132, 2279-2286 (1993). https://doi.org/10.1210/en.132.6.2279
- S. Takahashi, X. J. Chi, Y. Yamaguchi, H. Suzuki, S. Sugaya, and K. Kita, Potential human reproductive and development effects of bisphenol A, Mutat. Res., 490, 199-207 (2001). https://doi.org/10.1016/S1383-5718(00)00161-3
- M. M. Munoz de Toro, C. M. Markey, P. R. Wadia, E. H. Luque, B. S. Rubin, C. Sonnenschein, and A. M. Soto, Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice, Endocrinology, 146, 4138-4147 (2005). https://doi.org/10.1210/en.2005-0340
- K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. vom Saal, Exposure to bisphenol A advances puberty, Nature, 401, 763-764 (1999). https://doi.org/10.1038/44517
- A WWF European Toxics Programme Report, Bisphenol A: A Known Endocrine Disruptor, Registered Charity No. 20170 (2000).
- S. Yuksel, N. Kabay, and M. Yuksel, Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes, J. Hazard. Mater., 263, 307-310 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.020
-
J. G. Deng, Y. X. Peng, C. L. He, X. P. Long, P. Li, and A. S. C. Chan, Magnetic and conducting
$Fe_3O_4$ -polypyrrole nanoparticles with core-shell structure, Polym. Int., 52, 1182 (2003). https://doi.org/10.1002/pi.1237 -
C. Yu, L. Gou, X. Zhou, N. Bao, and H. Gu, Chitosan-
$Fe_3O_4$ nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochim. Acta, 56, 9056-9063 (2011). https://doi.org/10.1016/j.electacta.2011.05.135 - C. Zhou, S. Li, W. Zhu, H. Pang, and H. Ma, A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid, Electrochim. Acta, 113, 454-463 (2013). https://doi.org/10.1016/j.electacta.2013.09.109
- K.-J. Huang, Y.-J. Liua, Y.-M. Liua, and L.-L. Wang, Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination, J. Hazard. Mater., 276, 207-215 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.037
- S. Yang, R. Yang, G. Li, J. Li, and L. Qu, Voltammetric determination of theophylline ata Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode, J. Chem. Sci., 122, 919 (2010). https://doi.org/10.1007/s12039-010-0080-1
- R. B. Pernites, R. R. Ponnapati, and R. C. Advincula, Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted poly-thiophenes, Macromolecules, 43, 9724-9735 (2010). https://doi.org/10.1021/ma101868y
- S. M. Majd, H. Teymourian, A. Salimi, and R. Hallaj, Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode, Electrochim. Acta, 108, 707-716 (2013). https://doi.org/10.1016/j.electacta.2013.07.029
- A. O. Maria, A. O. Roberto, and N. M. Adriana, Selective spectrofluorimetric method for paracetamol determination through coumarinic compound formation, Talanta, 66, 229 (2005). https://doi.org/10.1016/j.talanta.2004.11.015
- J. R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nat. New Biol., 231, 232-235 (1971). https://doi.org/10.1038/newbio231232a0
- S. Muraoka and T. Miura, Inactivation of creatine kinase during the interaction of mefenamic acid with horseradish peroxidase and hydrogen peroxide: Participation by the mefenamic acid radical, Life Sci., 72, 1897-1907 (2003). https://doi.org/10.1016/S0024-3205(03)00012-2
- F. L. Martin and A. E. M. McLean, Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices, Drug Chem. Toxicol., 21, 477-494 (1998). https://doi.org/10.3109/01480549809002217
- L. Liu and J. Song, Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes, Anal. Biochem., 354, 22-27 (2006). https://doi.org/10.1016/j.ab.2006.04.015
- A. Babaei, M. Afrasiabi, and M. Babazadeh, A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples, Electroanalysis, 22, 1743-1749 (2010). https://doi.org/10.1002/elan.200900578
- L. A. Dunn, K. T. Andrews, J. S. McCarthy, J. M. Wright, T. S. Skinner-Adams, P. Upcroft, and J. A. Upcroft, The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis, Int. J. Antimicrob. Agents, 29, 98-102 (2007). https://doi.org/10.1016/j.ijantimicag.2006.08.026
- A. H. Davies, J. A. Mafadzean, and S. Squires, Treatment of Vincent's stomatitis with metronidazole, Br. Med. J., 5391, 1149-1150 (1964).
- N. Dione, S. Khelaifia, J. C. Lagier, and D. Raoult, The aerobic activity of metronidazole against anaerobic bacteria, Int. J. Antimicrob. Agents, 45, 537-540 (2015). https://doi.org/10.1016/j.ijantimicag.2014.12.032
- A. Katsandri, A. Avlamis, A. Pantazatou, G. L. Petrikkos, N. J. Legakis, and J. Papaparaskevas, In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece, including metronidazole-resistant strains, Diagn. Microbiol. Infect. Dis., 55, 231-236 (2006). https://doi.org/10.1016/j.diagmicrobio.2006.01.022
- S. Meenakshi, K. Pandian, L. S. Jayakumari, and S. Inbasekaran, Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin- film modified glassy carbon electrode, Mater. Sci. Eng. C, 59, 136-144 (2016). https://doi.org/10.1016/j.msec.2015.08.063
- F. G. Delolo, C. Rodrigues, M. Martins da Silva, L. R. Dinelli, F. N. Delling, J. Zukerman-Schpector, and A. A. Batista, A new electrochemical sensor containing a film of chitosan-supported ruthenium: Detection and quantification of sildenafil citrate and acetaminophen, J. Braz. Chem. Soc., 25, 550-559 (2014).
- J. Sabate, J. Labanda, and J. Llorens Nanofiltration of biogenic amines in acidic conditions: Influence of operation variables and modeling. J. Membr. Sci., 310, 594-601 (2008). https://doi.org/10.1016/j.memsci.2007.12.003
- F. Coloretti, C. Chiavari, E. Armaforte, S. Carri, and G. Castagnetti, Combined use of starter cultures and preservatives to control production of biogenic amines and improve sensorial profile in low-acid salami, J. Agri. Food Chem., 56(23), 11238-11244 (2008). https://doi.org/10.1021/jf802002z
- N. Garcia-Villar, S. Hernandez-Cassou, and J. Saurina, Characterization of wines through the biogenic amine contents using chromatographic techniques and chemometric data analysis, J. Agri. Food Chem., 55(18), 7453-7461 (2007). https://doi.org/10.1021/jf071268d
-
C. O. Mohan, C. N. Ravishankar, T. K. S. Gopal, K. A. Kumar, and K. V. Lalitha, Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with
$O_2$ scavenger during chilled storage, Food Res. Int., 42(3), 411-416 (2009). https://doi.org/10.1016/j.foodres.2009.01.015 - N. F. Atta and A. M. Abdel-Mageed, Smart electrochemical sensor for some neurotransmitters using imprinted sol-gel films, Talanta, 80(2), 511-518 (2009). https://doi.org/10.1016/j.talanta.2009.07.014
- B. J. McCabe-Sellers, C. G. Staggs, and M. L. Bogle, Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge, J. Food Composition Anal., 19(1), 58-65 (2006).
- F. Galgano, F. Favati, M. Bonadio, V. Lorusso, and P. Romano, Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials, Food Res. Int., 42(8), 1147-1152 (2009). https://doi.org/10.1016/j.foodres.2009.05.012
- D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007). https://doi.org/10.1016/j.snb.2007.05.006
- R. A. Harrington, R. C. Becker, and M. Ezekowitz, Antithrombotic therapy for coronary artery disease: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 513-548 (2004). https://doi.org/10.1378/chest.126.3_suppl.513S
- D. N. Salem, P. T. O'Gara, C. Madias, and S. G. Pauker, Valvular and structural heart disease: American college of chest physicians evidence-based clinical practice guidelines (8th edition), Chest, 133, 593-629 (2008). https://doi.org/10.1378/chest.07-2638
- D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, and W. J. Manning, Antithrombotic therapy in atrial fibrillation: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 429-456 (2004). https://doi.org/10.1378/chest.126.3_suppl.429S
- S. Sun, M. Wang, L. Su, J. Li, H. Li, and D. Gu, Study on warfarin plasma concentration and its correlation with international normalized ratio, J. Pharm. Biomed. Anal., 42, 218-222 (2006). https://doi.org/10.1016/j.jpba.2006.03.019
- M. B. Gholivand and L. Mohammadi-Behzad, An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode, Mater. Sci. Eng. C, 57, 77-87 (2015). https://doi.org/10.1016/j.msec.2015.07.020
- R. Jain and Vikas, Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation, Coll.. Surf. B: Biointerfaces, 87, 423-426 (2011). https://doi.org/10.1016/j.colsurfb.2011.06.001
- G. Wilson, Text Book of Organic Medicinal and Pharmaceutical Chemistry, 11th edition, Lippincott, London (2004).
- A. Chaudhury, In vitro activity of cefpirome: A new fourth generation cephalosporin, Ind. J. Med. Microbiol., 21, 52-55 (2003).
- R. Solna, S. Sapelnikova, P. Skladal, M. Winther-Nielsen, C. Carlsson, J. Emneus, and T. Ruzgas, Multienzyme electrochemical array sensor for determination of phenols and pesticides, Talanta, 65, 349-357 (2005). https://doi.org/10.1016/j.talanta.2004.07.005
- J. Massoulie, L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette, Molecular and cellular biology of cholinesterases, Prog. Neurobiol., 41, 31-91 (1993). https://doi.org/10.1016/0301-0082(93)90040-Y
- D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007). https://doi.org/10.1016/j.snb.2007.05.006
- A. C. Ion, I. Ion, A. Culetu, D. Gherase, C. A. Moldovan, R. Iosub, and A. Dinescu, Acetylcholinesterase voltammetric biosensors based on carbon nanostructurechitosan composite material for organophosphate pesticides, Mater. Sci. Eng. C, 30, 817-821 (2010). https://doi.org/10.1016/j.msec.2010.03.017
- J. J. Yang, C. Yang, H. Jiang, and C. L. Qiao, Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates, Biodegradation, 19, 831-839 (2008). https://doi.org/10.1007/s10532-008-9186-2
- W. Yazhen, Q. Hongxin, H. Siqian, and X. Junhui, A novel methyl parathion electrochemical sensor based on acetylene black-chitosan composite film modified electrode, Sens. Actuat. B: Chem., 147, 587-592 (2010). https://doi.org/10.1016/j.snb.2010.03.034
- D. J. Lee, S. A. Senseman, A. S. Sciumbato, S. C. Jung, and L. J Krutz The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water, J. Agric. Food Chem., 51, 2659-2664 (2003). https://doi.org/10.1021/jf026232u
- L. Tang, G.-M. Zeng, G.-L. Shen, Y.-P. Li, Y. Zhang, and D.-L. Huang, Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor, Environ. Sci. Technol., 42, 1207-1212 (2008). https://doi.org/10.1021/es7024593
- Q. Xu, X. Li, Y. Zhou, H. Wei, X. Y. Hu, Y. Wang, and Z. Yang, An enzymatic amplified system for the detection of 2,4-dichlorophenol based on graphene membrane modified electrode, Anal. Methods, 4, 3429-3435 (2012). https://doi.org/10.1039/c2ay25423a
- Rawajfih and N. Nsour, Characteristics of phenol and chlorinated phenolssorption onto surfactant-modified bentonite, J. Colloid Interf. Sci., 298, 39-49 (2006). https://doi.org/10.1016/j.jcis.2005.11.063
- L. Yu, X. Yue, R. Yang, S. Jing, and L. Qu, A sensitive and low toxicity electrochemical sensor for 2,4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan, Sens. Actuat. B: Chem., 224, 241-247 (2016). https://doi.org/10.1016/j.snb.2015.10.035
- N. Kaura, A. Bhartia, S. Batraa, S. Ranaa, S. Ranab, A. Bhallab, and N. Prabhakara, An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A, Microchem. J., 144, 102-109 (2019). https://doi.org/10.1016/j.microc.2018.08.064
- E. Pashai, G. N. Darzi, M. Jahanshahi, F. Yazdian, and M. Rahimnejad, An electrochemical nitric oxide biosensor based on immobilizedcytochrome c on a chitosan-gold nanocomposite modified goldelectrode, Int. J. Biol Macromol., 108, 250-258 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.157
- N. Prabhakar, H. Thakur, A. Bharti, and N. Kaur, Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion, Anal. Chim. Acta., 939, 108-116 (2016). https://doi.org/10.1016/j.aca.2016.08.015
- A. Camila, D. Lima, P. S. da Silva, and A. Spinelli, Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds, Sens. Actuat. B: Chem., 196, 39-45 (2014). https://doi.org/10.1016/j.snb.2014.02.005
- C. Sun, Y. Zou, D. Wang, Z. Geng, W. Xu, F. Liu, and J. Cao, Construction of chitosan-Zn-based electrochemical biosensing platform for rapid and accurate assay of actin, Sensors, 18, 1865 (2018). https://doi.org/10.3390/s18061865
- H. V. Tran, C. D. Huynh, H. V. Tran, and B. Piro, Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite, Arab. J. Chem., 11, 453-459 (2018). https://doi.org/10.1016/j.arabjc.2016.08.007
- J. Tashkhourian, S. F. Nami-Ana, and M. Shamsipur, Designing a modified electrode based on graphene quantum dotchitosan application to electrochemical detection of epinephrine, J. Mol. Liq., 266, 548-556 (2018). https://doi.org/10.1016/j.molliq.2018.06.093
- S. Rajabzadeh, G. H. Rounaghi, M. H. Arbab-Zavar, and N. Ashraf, Development of a dimethyl disulfide electrochemical sensor based onelectrodeposited reduced graphene oxide-chitosan modified glassycarbon electrode, Electrochim. Acta, 135, 543-549 (2014). https://doi.org/10.1016/j.electacta.2014.05.064
- B. Liu, H. T. Lian, J. F. Yin, and X. Y. Sun, Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite, Electrochim. Acta, 75, 108-114 (2012). https://doi.org/10.1016/j.electacta.2012.04.081
- W.-R. Zhao, T.-F. Kang, L.-P. Lu, and S.-Y. Cheng Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol, J. Electroanal. Chem., 818, 181-190 (2018). https://doi.org/10.1016/j.jelechem.2018.04.036
- Z. Wu, F. Guo, L. Huanga, and L. Wanga, Electrochemical nonenzymatic sensor based on cetyltrimethylammonium bromide and chitosan functionalized carbon nanotube modified glassy carbon electrode for the determination of hydroxymethanesulfinate in the presence of sulfite in foods, Food Chem., 259, 213-218 (2018). https://doi.org/10.1016/j.foodchem.2018.03.080
- M. Baccarina, F. A. Santosb, F. C. Vicentinic, V. Zucolottob, B. C. Janegitzd, and O. Fatibello-Filhoa, Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples, J. Electroanal. Chem., 799, 436-443 (2017). https://doi.org/10.1016/j.jelechem.2017.06.052
- W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, and J. Huang, Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin, Biosens. Bioelectron., 38, 163-169 (2012). https://doi.org/10.1016/j.bios.2012.05.017
- G. Yang, F. Zhao, and B. Zeng, Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine, Talanta, 127, 116-122 (2014). https://doi.org/10.1016/j.talanta.2014.03.029
- L. Magerusan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, and I. O. Pana, Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection, Electrochim. Acta, 283, 578-589 (2018). https://doi.org/10.1016/j.electacta.2018.06.203
-
Y. Hu, J. Li, Z. Zhang, H. Zhang, L. Luo, and S. Yao, Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on
$Fe_3O_4@SiO_2$ /multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode, Anal. Chimica Acta., 698, 61-68 (2011). https://doi.org/10.1016/j.aca.2011.04.054 - J. Xia, X. Cao, Z. Wang, M. Yang, F. Zhang, B. Lu, F. Li, L. Xia, Y. Li, and Y. Xia, Molecularly imprinted electrochemical biosensor based onchitosan/ionic liquid-graphene composites modified electrodefor determination of bovine serum albumin, Sens. Actuat. B: Chem., 225, 305-311(2016). https://doi.org/10.1016/j.snb.2015.11.060
- D. Yuan, S. Chen, F. Hu, C. Wang, and R. Yuan, Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt-Au-organosilica@ chitosan composites modified electrode, Sens. Actuat. B: Chem., 168, 193-199 (2012). https://doi.org/10.1016/j.snb.2012.03.085
- F. mollarasouli, K. Asadpour-Zeynali, S. Campuzano, P. Yanez-Sedeno, and J. M. Pingarron, Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures, Electrochim. Acta, 246, 303-314 (2017). https://doi.org/10.1016/j.electacta.2017.06.003
- D. Rao, Q. Sheng, and J. Zheng, Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine, Sens. Actuat. B: Chem., 236, 192-200 (2016). https://doi.org/10.1016/j.snb.2016.05.160
- C. Xiang, R. Li, B. Adhikari, Z. She, Y. Li, and H.-B. Kraatz, Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film, Talanta, 140, 122-127 (2015). https://doi.org/10.1016/j.talanta.2015.03.033
- Q. Zhang, Y. Qing, X. Huang, C. Li, and J. Xue, Synthesis of single-walled carbon nanotubes-chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection, Mater. Lett., 211, 348-351(2018). https://doi.org/10.1016/j.matlet.2017.10.036
- H. Ciftci, U. Tamer, A. U. Metin, E. Alver, and N. Kizir, Electrochemical copper (II) sensor based on chitosan covered gold Nanoparticles, J Appl. Electrochem., 44, 563-572 (2014). https://doi.org/10.1007/s10800-014-0676-0
- Y. Si, J. Liu, A. Wang, S. Niu, and J. Wan, A chitosan-graphene electrochemical sensor for the determination of copper(II), Instrument. Sci. Technol., 43(3), 357-368 (2015). https://doi.org/10.1080/10739149.2014.994126
- Z. Mo, H. Liu, R. Hu, H. Gou, Z. Li, and R. Guo, Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu(II), Ionics, 24(5), 1505-1513 (2017). https://doi.org/10.1007/s11581-017-2309-1
- Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T. Zhao, T.-S. Sun, and C. Ma, Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/ poly-L-lysine nanocomposite modified glassy carbon electrode, J. Colloid Interf. Sci., 490, 11-22 (2017). https://doi.org/10.1016/j.jcis.2016.11.006
- C. I. Fort, L. C. Cotet, A. Vulpoi, G. L. Turdean, V. Danciu, L. Baia, and I.C. Popescu, Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II)and Cd(II), Sens. Actuat. B: Chem., 220, 712-719 (2015). https://doi.org/10.1016/j.snb.2015.05.124
-
W. Wu, M. Jia, Z. Wang, W. Zhang, Q. Zhang, G. Liu, Z. Zhang, and P. Li, Simultaneous voltammetric determination of cadmium (II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite (
$Fe_3O_4$ ) nanoparticles and fluorinated multiwalled carbon nanotubes, Microchim. Acta., 186, 97 (2019). https://doi.org/10.1007/s00604-018-3216-5 -
S. Xiong, B. Yang, D. Cai, G. Qiu, and Z. Wu, Individual and simultaneous stripping voltammetric and mutual interference analysis of Cd(II), Pb(II)and Hg(II) with reduced graphene oxide-
$Fe_3O_4$ nanocomposites, Electrochim. Acta, 185, 52-61 (2015). https://doi.org/10.1016/j.electacta.2015.10.114 -
Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, and J. Ye, A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on
$Fe_3O_4$ /multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode, Mater. Chem. Phys., 238, 121877 (2019). https://doi.org/10.1016/j.matchemphys.2019.121877 - G. Padmalaya, B. S. Sreeja, P. S. Kumar, and M. Arivanandhan, Chitosan zinc anchored oxide nanocompositeas modified electrochemical sensor for the detection of Cd(II) ions, Desal. Wat. Treat., 97, 295-303 (2017). https://doi.org/10.5004/dwt.2017.21612
- Y. Chu, F. Gao, F. Gao, and Q. Wang, Enhanced stripping voltammetric response of Hg(II), Cu(II), Pb(II) and Cd(II) by ZIF-8 and its electrochemical analytical application, J. Electroanal. Chem., 835, 293-300 (2019). https://doi.org/10.1016/j.jelechem.2019.01.053
- S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi, Silver nanoparticles built-in chitosan modified glassy carbon electrode for anodic stripping analysis of As(III) and its removal from water, Electrochim. Acta, 72, 157-164 (2012). https://doi.org/10.1016/j.electacta.2012.04.025
-
S. Saha and P.Sarkar, Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-
$Fe(OH)_3$ modified glassy carbon electrode: A new approach towards speciation of arsenic, Talanta, 158, 235-245 (2016). https://doi.org/10.1016/j.talanta.2016.05.053 - X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes, Anal. Chem., 76, 5924-5929 (2004). https://doi.org/10.1021/ac049232x
- D. Tiwari, Zirlianngura, and S. M. Lee, Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes, J. Electroanal. Chem., 784, 109-114 (2017). https://doi.org/10.1016/j.jelechem.2016.11.051
- J. Lalmalsawmi, Zirlianngura, D. Tiwari, and S.-M. Lee, Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite, Environ. Eng. Res., 25(4), 579-587 (2020). https://doi.org/10.4491/eer.2019.245
- A. Salimi, B. Pourbahram, S. Mansouri-Majd, and R. Hallaj, Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection, Electrochim. Acta, 156, 207-215 (2015). https://doi.org/10.1016/j.electacta.2014.12.146
- Z. Lu, S. Yang, Q. Yang, S. Luo, C. Liu, and Y. Tang, A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead(II), Microchim. Acta, 180, 555-562 (2013). https://doi.org/10.1007/s00604-013-0959-x
- T. Priya, N. Dhanalakshmi, and N. Thinakaran, Elctrochemical behaviour of Pb(II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection, Int. J. Biol. Macromol., 104, 672-680 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.082
-
Y. Zuo, J. Xu, F. Jiang, X. Duan, L. Lu, H. Xing, T. Yang, Y. Zhang, G. Ye, and Y. Yu, Voltammetric sensing of Pb(II) using a glassy carbon electrode modified with composites consisting of
$Co_3O_4$ nanoparticles, reduced graphene oxide and chitosan, J. Electroanal. Chem., 801, 146-152 (2017). https://doi.org/10.1016/j.jelechem.2017.07.046 - C. Hao, Y. Shen, J. Shen, K. Xu, X. Wang, Y. Zhao, and C. Ge, A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II), Microchim. Acta, 183, 1823-1830 (2016). https://doi.org/10.1007/s00604-016-1816-5
- M. Rajkumar, S. Thiagarajan, and S.-M. Chen, Electrochemical detection of arsenic in various water samples, Int. J. Electrochem. Sci., 6, 3164-3177 (2011).
- A. O. Idris, J. P. Mafa, N. Mabuba, and O. A. Arotiba, Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 53(2),170-177 (2017). https://doi.org/10.1134/S1023193517020082
- X. Dai and R. G. Compton, Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper, Analyst, 131, 516-521 (2006). https://doi.org/10.1039/b513686e
- H. Gu, Y. Yang, F. Chen, T. Liu, J. Jin, Y. Pan, and P. Miao, Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification, Chem. Eng. J., 353, 305-310 (2018). https://doi.org/10.1016/j.cej.2018.07.137
- J.-F. Huang and H.-H. Chen, Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III), Talanta, 116, 852-859 (2013). https://doi.org/10.1016/j.talanta.2013.07.063
- M. Ghanei-Motlagh and M. A. Tahera, Novel imprinted polymeric nanoparticles prepared by sol- gel technique for electrochemical detection of toxic cadmium(II) ions, Chem. Eng. J., 327, 135-141 (2017). https://doi.org/10.1016/j.cej.2017.06.091
- G. Zhao, Y. Si, H. Wang, and G. Liu, A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry, Int. J. Electrochem. Sci., 11, 54-64 (2016).
- D. Martin-Yerga, I. Alvarez-Martos, M. C. Blanco-Lopez, C. S. Henry, and M. T. Fernandez-Abedul, Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes, Anal. Chimica Acta., 981, 24-33 (2017). https://doi.org/10.1016/j.aca.2017.05.027
- G. Zhao, H. Wang, G. Liu, and Z. Wang, Box-Behnken response surface design for the optimization of electrochemical detection of cadmium by square wave anodic stripping voltammetry on bismuth film/glassy carbon electrode, Sens. Actuat. B: Chem., 235, 67-73 (2016). https://doi.org/10.1016/j.snb.2016.05.051
-
X. Wang and X. Guo, Ultrasensitive
$Pb^{2+}$ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles, Analyst, 134, 1348-1354 (2009). https://doi.org/10.1039/b822744f