DOI QR코드

DOI QR Code

Bio-Composite Materials Precursor to Chitosan in the Development of Electrochemical Sensors: A Critical Overview of Its use with Micro-Pollutants and Heavy Metals Detection

  • Sarikokba, Sarikokba (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences, Mizoram University) ;
  • Prasad, Shailesh Kumar (Department of Chemistry, National Institute of Technology) ;
  • Kim, Dong Jin (Department of Environmental Science & Biotechnology, Hallym University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Lee, Seung-Mok (Department of Health and Environment, Catholic Kwandong University)
  • Received : 2020.05.12
  • Accepted : 2020.05.19
  • Published : 2020.06.10

Abstract

The role of nano bio-composites precursor to chitosan are innumerable and are known for having different applications in various branches of physical sciences. The application to the sensor development is relatively new, where only few literature works are available to address the specific and critical analysis of nanocomposites in the subject area. The bio-composites are potential and having greater affinity towards the heavy metals and several micro-pollutants hence, perhaps are having wider implications in the low or even trace level detection of the pollutants. The nano-composites could show good selectivity and suitability for the detection of the pollutants as they are found in the complex matrix. However, the greater challenges are associated using the bio-composites, since the biomaterials are prone to be oxidized or reduced at an applied potential and found to be a hinderance for the detection of target pollutants. In addition, the materials could proceed with a series of electrochemical reactions, which could produce different by-products in analytical applications, resulting in several complex phenomena in electrochemical processes. Therefore, this review addresses critically various aspects of an evaluation of nano bio-composite materials in the electrochemical detection of heavy metals and micro-pollutants from aqueous solutions.

Keywords

References

  1. Y. Luo, W. Guo, H. H. Ngo, L. D. Nghiem, F. I. Hai, J. Zhang, S. Liang, and X. C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473-474, 619-641 (2014). https://doi.org/10.1016/j.scitotenv.2013.12.065
  2. N. Bolong, A. F. Ismail, M. R. Salim, and T. Matsuura, A review of the effects of emerging contaminants in wastewater and options for their removal, Desalination, 239, 229-246 (2009). https://doi.org/10.1016/j.desal.2008.03.020
  3. A. Joss, E. Keller, A. Alder, A. Gobel, C.S. McArdell, T. Ternes, and H. Siegrist, Removal of pharmaceuticals and fragrances in biological wastewater treatment, Wat. Res., 39, 3139-3152 (2005). https://doi.org/10.1016/j.watres.2005.05.031
  4. J. Lienert, T. Buerki, and B. I. Escher, Reducing micropollutants with source control: Substance flow analysis of 212 pharmaceuticals in faeces and urine, Wat. Sci. Technol., 56(5), 87-96 (2007). https://doi.org/10.2166/wst.2007.560
  5. K. A. Landry and T. H. Boyer, Diclofenac removal in urine using strong-base anion exchange polymer resins, Wat. Res., 47, 6432-6444 (2013). https://doi.org/10.1016/j.watres.2013.08.015
  6. J. Barek, J. Fischer, T. Navratil, K. Peckova, B. Yosypchuk, and J. Zima Nontraditional electrode materials in environmental analysis of biologically active organic compounds, Electroanalysis, 19, 19-20 (2007).
  7. D. M. Quinn, Acetylcholinesterase: Enzyme structure, reaction dynamics, and virtual transition states, Chem. Rev., 87, 955-979 (1987). https://doi.org/10.1021/cr00081a005
  8. A. Roda, P. Rauch, E. Ferri, S. Girotti, S. Ghini, G. Carrea, and R. Bovara, Chemiluminescent flow sensor for the determination of Paraoxon and Aldicarb pesticides, Anal. Chim. Acta., 294, 35-42 (1994). https://doi.org/10.1016/0003-2670(94)85043-7
  9. H. Xing, X. Wang, G. Sunb, X. Gao, S. Xu, and X. Wang, Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio L.), Environ. Toxicol. Pharmacol., 33, 233-244 (2012). https://doi.org/10.1016/j.etap.2011.12.014
  10. M. Kucka, K. Pogrmic-Majkic, S. Fa, S. S. Stojilkovic, and R. Kovacevic, Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4, Toxicol. Appl. Pharmacol., 265, 19-26 (2012). https://doi.org/10.1016/j.taap.2012.09.019
  11. K. Y. Lin and W. Chu, Simulation and quantification of the natural decay of a typical endocrine disrupting chemical Atrazine in an aquatic system, J. Hazard. Mater., 192, 1260-1266 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.042
  12. L. F. Delgado, P. Charles, K. Glucina, and C. Morlay, The removal of endocrine disrupting compounds, pharmaceutically activated compounds and cyanobacterial toxins during drinking water preparation using activated carbon - A review, Sci. Total Environ., 435-436, 509-525 (2012). https://doi.org/10.1016/j.scitotenv.2012.07.046
  13. M. Valko, H. Morris, and M. T. D. Cronin, Metals, toxicity and oxidative stress, Curr. Med. Chem., 12, 1161-1208 (2005). https://doi.org/10.2174/0929867053764635
  14. Zirlianngura, D. Tiwari, J.-H. Ha, and S.-M. Lee, Efficient use of porous hybrid materials in a selective detection of lead(II) from aqueous solutions: An electrochemical study, Metals, 7, 124 (2017). https://doi.org/10.3390/met7040124
  15. B. K. Bansod, T. Kumar, R. Thakur, S. Rana, and I. Singh, A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms, Biosen. Bioelectron., 94, 443-455 (2017). https://doi.org/10.1016/j.bios.2017.03.031
  16. M. B. Gumpua, S. Sethuramanb, U. M. Krishnanb, and J. B. B. Rayappana, A review on detection of heavy metal ions in water - An electrochemical approach, Sens. Actuat. B, 213, 515-533 (2015). https://doi.org/10.1016/j.snb.2015.02.122
  17. D. Bagal-Kestwal, M. S. Karve, B. Kakade, and V. K. Pillai, Invertase inhibition based electrochemical sensor for the detection of heavy metal ions in aqueous system: Application of ultra-microelectrode to enhance sucrose biosensor's sensitivity, Biosens. Bioelectron., 24, 657-664 (2008). https://doi.org/10.1016/j.bios.2008.06.027
  18. M. Kumar and A. Puri, A review of permissible limits of drinking water, Ind. J. Occupat. Environ. Med., 16, 1 (2012). https://doi.org/10.4103/0019-5278.99678
  19. T. Gong, J. Liu, X. Liu, J. Liu, J. Xiang, and Y. Wu, A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks, Food Chem., 213, 306-312 (2016). https://doi.org/10.1016/j.foodchem.2016.06.091
  20. R. Sitko, P. Janik, B. Zawisza, E. Talik, E. Margui, and I. Queralt, Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent, Anal. Chem., 87, 3535-3542 (2015). https://doi.org/10.1021/acs.analchem.5b00283
  21. V. N. Losev, O. V. Buyko, A. K. Trofimchuk, and O. N. Zuy, Silica sequentially modified with polyhexamethylene guanidine and arsenazo I for preconcentration and ICPOES determination of metals in natural waters. Micro Chem. J., 123, 84-89 (2015).
  22. Y. Yi, G. Zhu, C. Liu, Y. Huang, Y. Zhang, H. Li, J. Zhao, and S. Yao, A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides, Anal. Chem., 85, 11464-11470 (2013). https://doi.org/10.1021/ac403257p
  23. M. C. Rouget, Des substances amylacees dans les tissus des animaux, specialement des Articules (chitine). Comp. Rend., 48, 792-795 (1859).
  24. D. Raafat, K. von Bargen, A. Haas, and H.-G. Sahl, Insights into the mode of action of chitosan as an antibacterial compound, Appl. Environ. Microbiol., 74, 3764-3773 (2008). https://doi.org/10.1128/AEM.00453-08
  25. G. Crini and P.-M. Badot, Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature, Prog. Polym. Sci., 33, 399-447 (2008). https://doi.org/10.1016/j.progpolymsci.2007.11.001
  26. Lalchhingpuii, D. Tiwari, Lalhmunsiama, and S. M. Lee, Chitosan templated synthesis of mesoporous silica and its application in the treatment of aqueous solutions contaminated with cadmium(II) and lead(II), Chem. Eng. J., 328, 434-444 (2017). https://doi.org/10.1016/j.cej.2017.07.053
  27. S. K. Shukla, A. K. Mishra, O. A. Arotiba, and B. B. Mamba, Chitosan-based nanomaterials: A state-of-the-art review, Int. J. Biol. Macromol., 59, 46-58 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.043
  28. J. K. F. Suh and H. W. T. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: A review, Biomaterials, 21, 2589-2598 (2000). https://doi.org/10.1016/S0142-9612(00)00126-5
  29. P. Agrawal, G. J. Strijkers, and K. Nicolay, Chitosan-based systems for molecular imaging, Adv. Drug Delivery Rev., 62, 42-58 (2010). https://doi.org/10.1016/j.addr.2009.09.007
  30. Lalhmunsiama, Lalchhingpuii, B. P. Nautiyal, D. Tiwari, S. I. Choi, S.-H. Kong, and S.-M. Lee, Silane grafted chitosan for the efficient remediation of aquatic environment contaminated with arsenic (V), J. Colloid Interf. Sci., 467, 203-212 (2016). https://doi.org/10.1016/j.jcis.2016.01.019
  31. B. Batra and C. S. Pundir, An amperometric glutamate biosensor based onimmobilization of glutamate oxidase onto carboxylated multiwalled carbonnanotubes/gold nanoparticles/chitosan composite film modified Au electrode, Biosens. Bioelectron., 47, 496-501 (2013). https://doi.org/10.1016/j.bios.2013.03.063
  32. S. J. Ling, R. Yuan, Y. Q. Chai, and T. T. Zhang, Study on immunosensor basedon gold nanoparticles/chitosan and $MnO_2$ nanoparticles composite mem-brane/Prussian blue modified gold electrode, Bioprocess Biosyst. Eng., 32, 407-414 (2009). https://doi.org/10.1007/s00449-008-0260-2
  33. C. Lalhriatpuia, D. Tiwari, A. Tiwari, and S. M. Lee, Immobilized nanopillars-$TiO_2$ in the efficient removal of micro-pollutants from aqueous solutions: Physico-chemical studies, Chem. Eng. J., 281, 782-792 (2015). https://doi.org/10.1016/j.cej.2015.07.032
  34. D. Vogna, R. Marotta, A. Napolitano, R. Andreozzi, and M. d'Ischia, Advanced oxidation of the pharmaceutical drug diclofenac with UV/$H_2O_2$ and ozone, Wat. Res., 38, 414-422 (2004). https://doi.org/10.1016/j.watres.2003.09.028
  35. Y. Zhang, S. Y. Geissen, and C. Gal, Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies, Chemosphere, 73, 1151-1161 (2008). https://doi.org/10.1016/j.chemosphere.2008.07.086
  36. J. M. Herrmann, Heterogeneous photocatalysis: Fundamentals and to the removal of various types of aqueous pollutants, Catal. Today, 53, 115-129 (1999). https://doi.org/10.1016/S0920-5861(99)00107-8
  37. C. Martinez, L. M. Canle, M. I. Fernandez, J. A. Santaballa, and J. Faria, Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials, Appl. Catal. B: Environ., 107, 110-118 (2011). https://doi.org/10.1016/j.apcatb.2011.07.003
  38. J. L. G. Oaks, M. Virani, M. Z. Watson, R. T. Meteyer, C. U. Rideout, B. A. Shivaprasad, H. L. Ahmed, S. Chaudhry, M. J. I. Arshad, M. Mahmood, S. Ali, and A. A. A. Khan, Diclofenac residues as the cause of vulture population decline in Pakistan, Nature, 427, 630-633 (2004). https://doi.org/10.1038/nature02317
  39. A. C. Mehinto, E. M. Hill, and C. R. Tyler, Uptake and biological effects environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol., 44, 2176-2182 (2010). https://doi.org/10.1021/es903702m
  40. M. Goodarzian, M. A. Khalilzade, F. Karimi, V. K. Gupta, M. Keyvanfard, H. Bagheri, and M. Fouladger, Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode, J. Mol. Liq., 197, 114-119 (2014). https://doi.org/10.1016/j.molliq.2014.04.037
  41. M. Shalauddin, S. Akhter, S. Bagheri, M. S. A. Karim, N. A. Kadri, and W. J. Basirun, Immobilized copper ions on MWCNTS-chitosan thin film: Enhanced amperometric sensor for electrochemical determination of diclofenac sodium in aqueous solution, Int. J. Hydro. Ener., 42, 1995-9960 (2017).
  42. A. R. Khaskheli, J. Fischer, J. Barek, V. Vyskocil, S. Muhammad, and I. Bhanger, Differential pulse voltammetric determination of paracetamol in tablet and urine samples at a micro-crystalline natural graphite-polystyrene composite film modified electrode, Electrochim. Acta, 101, 238-242 (2013). https://doi.org/10.1016/j.electacta.2012.09.102
  43. A. E. Robinson, Martindale: The extra pharmacopoeia 27th edition, J. Pharm. Pharmacol., 29, 647-648 (1977). https://doi.org/10.1111/j.2042-7158.1977.tb11428.x
  44. H. Yin, K. Shang, X. Meng, and S. Ai, Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide, Microchim. Acta, 175, 39-46 (2011). https://doi.org/10.1007/s00604-011-0652-x
  45. S. J. R. Prabakar and S. S. Narayanan, Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode, Talanta, 72, 1818-1827 (2007). https://doi.org/10.1016/j.talanta.2007.02.015
  46. S. Akhter, W. J. Basirun, Y. Alias, M. R. Johan, S. Bagheri, M. Shalauddin, M. Ladan, and N. S. Anuar, Enhanced amperometric detection of paracetamol by immobilized cobalt ion on functionalized MWCNTs - chitosan thin film, Anal. Biochem., 551, 29-36 (2018). https://doi.org/10.1016/j.ab.2018.05.004
  47. C. E. Gattullo, H. Bahrs, C. E. W. Steinberg, and E. Loffredo, Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter, Sci. Total Environ., 416, 501-506 (2012) https://doi.org/10.1016/j.scitotenv.2011.11.033
  48. Thanhmingliana, S. M. Lee, and D. Tiwari, Use of hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv., 4, 43921-43930 (2014).
  49. A. V. Krishnan, P. Stathis, S. F. Permuth, L. Tokes, and D. Feldman, Bisphenol-A: An estrogenic substance is released from polycarbonate flasks during autoclaving, Endocrinology, 132, 2279-2286 (1993). https://doi.org/10.1210/en.132.6.2279
  50. S. Takahashi, X. J. Chi, Y. Yamaguchi, H. Suzuki, S. Sugaya, and K. Kita, Potential human reproductive and development effects of bisphenol A, Mutat. Res., 490, 199-207 (2001). https://doi.org/10.1016/S1383-5718(00)00161-3
  51. M. M. Munoz de Toro, C. M. Markey, P. R. Wadia, E. H. Luque, B. S. Rubin, C. Sonnenschein, and A. M. Soto, Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice, Endocrinology, 146, 4138-4147 (2005). https://doi.org/10.1210/en.2005-0340
  52. K. L. Howdeshell, A. K. Hotchkiss, K. A. Thayer, J. G. Vandenbergh, and F. S. vom Saal, Exposure to bisphenol A advances puberty, Nature, 401, 763-764 (1999). https://doi.org/10.1038/44517
  53. A WWF European Toxics Programme Report, Bisphenol A: A Known Endocrine Disruptor, Registered Charity No. 20170 (2000).
  54. S. Yuksel, N. Kabay, and M. Yuksel, Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes, J. Hazard. Mater., 263, 307-310 (2013). https://doi.org/10.1016/j.jhazmat.2013.05.020
  55. J. G. Deng, Y. X. Peng, C. L. He, X. P. Long, P. Li, and A. S. C. Chan, Magnetic and conducting $Fe_3O_4$-polypyrrole nanoparticles with core-shell structure, Polym. Int., 52, 1182 (2003). https://doi.org/10.1002/pi.1237
  56. C. Yu, L. Gou, X. Zhou, N. Bao, and H. Gu, Chitosan-$Fe_3O_4$ nanocomposite based electrochemical sensors for the determination of bisphenol A, Electrochim. Acta, 56, 9056-9063 (2011). https://doi.org/10.1016/j.electacta.2011.05.135
  57. C. Zhou, S. Li, W. Zhu, H. Pang, and H. Ma, A sensor of a polyoxometalate and Au-Pd alloy for simultaneously detection of dopamine and ascorbic acid, Electrochim. Acta, 113, 454-463 (2013). https://doi.org/10.1016/j.electacta.2013.09.109
  58. K.-J. Huang, Y.-J. Liua, Y.-M. Liua, and L.-L. Wang, Molybdenum disulfide nanoflower-chitosan-Au nanoparticles composites based electrochemical sensing platform for bisphenol A determination, J. Hazard. Mater., 276, 207-215 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.037
  59. S. Yang, R. Yang, G. Li, J. Li, and L. Qu, Voltammetric determination of theophylline ata Nafion/multi-wall carbon nanotubes composite film-modified glassy carbon electrode, J. Chem. Sci., 122, 919 (2010). https://doi.org/10.1007/s12039-010-0080-1
  60. R. B. Pernites, R. R. Ponnapati, and R. C. Advincula, Surface plasmon resonance (SPR) detection of theophylline via electropolymerized molecularly imprinted poly-thiophenes, Macromolecules, 43, 9724-9735 (2010). https://doi.org/10.1021/ma101868y
  61. S. M. Majd, H. Teymourian, A. Salimi, and R. Hallaj, Fabrication of electrochemical theophylline sensor based on manganese oxide nanoparticles/ionic liquid/chitosan nanocomposite modified glassy carbon electrode, Electrochim. Acta, 108, 707-716 (2013). https://doi.org/10.1016/j.electacta.2013.07.029
  62. A. O. Maria, A. O. Roberto, and N. M. Adriana, Selective spectrofluorimetric method for paracetamol determination through coumarinic compound formation, Talanta, 66, 229 (2005). https://doi.org/10.1016/j.talanta.2004.11.015
  63. J. R. Vane, Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs, Nat. New Biol., 231, 232-235 (1971). https://doi.org/10.1038/newbio231232a0
  64. S. Muraoka and T. Miura, Inactivation of creatine kinase during the interaction of mefenamic acid with horseradish peroxidase and hydrogen peroxide: Participation by the mefenamic acid radical, Life Sci., 72, 1897-1907 (2003). https://doi.org/10.1016/S0024-3205(03)00012-2
  65. F. L. Martin and A. E. M. McLean, Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices, Drug Chem. Toxicol., 21, 477-494 (1998). https://doi.org/10.3109/01480549809002217
  66. L. Liu and J. Song, Voltammetric determination of mefenamic acid at lanthanum hydroxide nanowires modified carbon paste electrodes, Anal. Biochem., 354, 22-27 (2006). https://doi.org/10.1016/j.ab.2006.04.015
  67. A. Babaei, M. Afrasiabi, and M. Babazadeh, A glassy carbon electrode modified with multiwalled carbon nanotube/chitosan composite as a new sensor for simultaneous determination of acetaminophen and mefenamic acid in pharmaceutical preparations and biological samples, Electroanalysis, 22, 1743-1749 (2010). https://doi.org/10.1002/elan.200900578
  68. L. A. Dunn, K. T. Andrews, J. S. McCarthy, J. M. Wright, T. S. Skinner-Adams, P. Upcroft, and J. A. Upcroft, The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis, Int. J. Antimicrob. Agents, 29, 98-102 (2007). https://doi.org/10.1016/j.ijantimicag.2006.08.026
  69. A. H. Davies, J. A. Mafadzean, and S. Squires, Treatment of Vincent's stomatitis with metronidazole, Br. Med. J., 5391, 1149-1150 (1964).
  70. N. Dione, S. Khelaifia, J. C. Lagier, and D. Raoult, The aerobic activity of metronidazole against anaerobic bacteria, Int. J. Antimicrob. Agents, 45, 537-540 (2015). https://doi.org/10.1016/j.ijantimicag.2014.12.032
  71. A. Katsandri, A. Avlamis, A. Pantazatou, G. L. Petrikkos, N. J. Legakis, and J. Papaparaskevas, In vitro activities of Tigecycline against recently isolated Gram-negative anaerobic bacteria in Greece, including metronidazole-resistant strains, Diagn. Microbiol. Infect. Dis., 55, 231-236 (2006). https://doi.org/10.1016/j.diagmicrobio.2006.01.022
  72. S. Meenakshi, K. Pandian, L. S. Jayakumari, and S. Inbasekaran, Enhanced amperometric detection of metronidazole in drug formulations and urine samples based on chitosan protected tetrasulfonated copper phthalocyanine thin- film modified glassy carbon electrode, Mater. Sci. Eng. C, 59, 136-144 (2016). https://doi.org/10.1016/j.msec.2015.08.063
  73. F. G. Delolo, C. Rodrigues, M. Martins da Silva, L. R. Dinelli, F. N. Delling, J. Zukerman-Schpector, and A. A. Batista, A new electrochemical sensor containing a film of chitosan-supported ruthenium: Detection and quantification of sildenafil citrate and acetaminophen, J. Braz. Chem. Soc., 25, 550-559 (2014).
  74. J. Sabate, J. Labanda, and J. Llorens Nanofiltration of biogenic amines in acidic conditions: Influence of operation variables and modeling. J. Membr. Sci., 310, 594-601 (2008). https://doi.org/10.1016/j.memsci.2007.12.003
  75. F. Coloretti, C. Chiavari, E. Armaforte, S. Carri, and G. Castagnetti, Combined use of starter cultures and preservatives to control production of biogenic amines and improve sensorial profile in low-acid salami, J. Agri. Food Chem., 56(23), 11238-11244 (2008). https://doi.org/10.1021/jf802002z
  76. N. Garcia-Villar, S. Hernandez-Cassou, and J. Saurina, Characterization of wines through the biogenic amine contents using chromatographic techniques and chemometric data analysis, J. Agri. Food Chem., 55(18), 7453-7461 (2007). https://doi.org/10.1021/jf071268d
  77. C. O. Mohan, C. N. Ravishankar, T. K. S. Gopal, K. A. Kumar, and K. V. Lalitha, Biogenic amines formation in seer fish (Scomberomorus commerson) steaks packed with $O_2$ scavenger during chilled storage, Food Res. Int., 42(3), 411-416 (2009). https://doi.org/10.1016/j.foodres.2009.01.015
  78. N. F. Atta and A. M. Abdel-Mageed, Smart electrochemical sensor for some neurotransmitters using imprinted sol-gel films, Talanta, 80(2), 511-518 (2009). https://doi.org/10.1016/j.talanta.2009.07.014
  79. B. J. McCabe-Sellers, C. G. Staggs, and M. L. Bogle, Tyramine in foods and monoamine oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food industry converge, J. Food Composition Anal., 19(1), 58-65 (2006).
  80. F. Galgano, F. Favati, M. Bonadio, V. Lorusso, and P. Romano, Role of biogenic amines as index of freshness in beef meat packed with different biopolymeric materials, Food Res. Int., 42(8), 1147-1152 (2009). https://doi.org/10.1016/j.foodres.2009.05.012
  81. D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007). https://doi.org/10.1016/j.snb.2007.05.006
  82. R. A. Harrington, R. C. Becker, and M. Ezekowitz, Antithrombotic therapy for coronary artery disease: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 513-548 (2004). https://doi.org/10.1378/chest.126.3_suppl.513S
  83. D. N. Salem, P. T. O'Gara, C. Madias, and S. G. Pauker, Valvular and structural heart disease: American college of chest physicians evidence-based clinical practice guidelines (8th edition), Chest, 133, 593-629 (2008). https://doi.org/10.1378/chest.07-2638
  84. D. E. Singer, G. W. Albers, J. E. Dalen, A. S. Go, J. L. Halperin, and W. J. Manning, Antithrombotic therapy in atrial fibrillation: The seventh ACCP conference on antithrombotic and thrombolytic therapy, Chest, 126, 429-456 (2004). https://doi.org/10.1378/chest.126.3_suppl.429S
  85. S. Sun, M. Wang, L. Su, J. Li, H. Li, and D. Gu, Study on warfarin plasma concentration and its correlation with international normalized ratio, J. Pharm. Biomed. Anal., 42, 218-222 (2006). https://doi.org/10.1016/j.jpba.2006.03.019
  86. M. B. Gholivand and L. Mohammadi-Behzad, An electrochemical sensor for warfarin determination based on covalent immobilization of quantum dots onto carboxylated multiwalled carbon nanotubes and chitosan composite film modified electrode, Mater. Sci. Eng. C, 57, 77-87 (2015). https://doi.org/10.1016/j.msec.2015.07.020
  87. R. Jain and Vikas, Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation, Coll.. Surf. B: Biointerfaces, 87, 423-426 (2011). https://doi.org/10.1016/j.colsurfb.2011.06.001
  88. G. Wilson, Text Book of Organic Medicinal and Pharmaceutical Chemistry, 11th edition, Lippincott, London (2004).
  89. A. Chaudhury, In vitro activity of cefpirome: A new fourth generation cephalosporin, Ind. J. Med. Microbiol., 21, 52-55 (2003).
  90. R. Solna, S. Sapelnikova, P. Skladal, M. Winther-Nielsen, C. Carlsson, J. Emneus, and T. Ruzgas, Multienzyme electrochemical array sensor for determination of phenols and pesticides, Talanta, 65, 349-357 (2005). https://doi.org/10.1016/j.talanta.2004.07.005
  91. J. Massoulie, L. Pezzementi, S. Bon, E. Krejci, and F. M. Vallette, Molecular and cellular biology of cholinesterases, Prog. Neurobiol., 41, 31-91 (1993). https://doi.org/10.1016/0301-0082(93)90040-Y
  92. D. Du, X. Huang, J. Cai, and A. Zhang, Amperometric detection of triazophos pesticide using acetylcholinesterase biosensor based on multiwall carbon nanotube-chitosan matrix, Sens. Actuat. B: Chem., 127, 531-535 (2007). https://doi.org/10.1016/j.snb.2007.05.006
  93. A. C. Ion, I. Ion, A. Culetu, D. Gherase, C. A. Moldovan, R. Iosub, and A. Dinescu, Acetylcholinesterase voltammetric biosensors based on carbon nanostructurechitosan composite material for organophosphate pesticides, Mater. Sci. Eng. C, 30, 817-821 (2010). https://doi.org/10.1016/j.msec.2010.03.017
  94. J. J. Yang, C. Yang, H. Jiang, and C. L. Qiao, Overexpression of methyl parathion hydrolase and its application in detoxification of organophosphates, Biodegradation, 19, 831-839 (2008). https://doi.org/10.1007/s10532-008-9186-2
  95. W. Yazhen, Q. Hongxin, H. Siqian, and X. Junhui, A novel methyl parathion electrochemical sensor based on acetylene black-chitosan composite film modified electrode, Sens. Actuat. B: Chem., 147, 587-592 (2010). https://doi.org/10.1016/j.snb.2010.03.034
  96. D. J. Lee, S. A. Senseman, A. S. Sciumbato, S. C. Jung, and L. J Krutz The effect of titanium dioxide alumina beads on the photocatalytic degradation of picloram in water, J. Agric. Food Chem., 51, 2659-2664 (2003). https://doi.org/10.1021/jf026232u
  97. L. Tang, G.-M. Zeng, G.-L. Shen, Y.-P. Li, Y. Zhang, and D.-L. Huang, Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor, Environ. Sci. Technol., 42, 1207-1212 (2008). https://doi.org/10.1021/es7024593
  98. Q. Xu, X. Li, Y. Zhou, H. Wei, X. Y. Hu, Y. Wang, and Z. Yang, An enzymatic amplified system for the detection of 2,4-dichlorophenol based on graphene membrane modified electrode, Anal. Methods, 4, 3429-3435 (2012). https://doi.org/10.1039/c2ay25423a
  99. Rawajfih and N. Nsour, Characteristics of phenol and chlorinated phenolssorption onto surfactant-modified bentonite, J. Colloid Interf. Sci., 298, 39-49 (2006). https://doi.org/10.1016/j.jcis.2005.11.063
  100. L. Yu, X. Yue, R. Yang, S. Jing, and L. Qu, A sensitive and low toxicity electrochemical sensor for 2,4-dichlorophenol based on the nanocomposite of carbon dots, hexadecyltrimethyl ammonium bromide and chitosan, Sens. Actuat. B: Chem., 224, 241-247 (2016). https://doi.org/10.1016/j.snb.2015.10.035
  101. N. Kaura, A. Bhartia, S. Batraa, S. Ranaa, S. Ranab, A. Bhallab, and N. Prabhakara, An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A, Microchem. J., 144, 102-109 (2019). https://doi.org/10.1016/j.microc.2018.08.064
  102. E. Pashai, G. N. Darzi, M. Jahanshahi, F. Yazdian, and M. Rahimnejad, An electrochemical nitric oxide biosensor based on immobilizedcytochrome c on a chitosan-gold nanocomposite modified goldelectrode, Int. J. Biol Macromol., 108, 250-258 (2018). https://doi.org/10.1016/j.ijbiomac.2017.11.157
  103. N. Prabhakar, H. Thakur, A. Bharti, and N. Kaur, Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion, Anal. Chim. Acta., 939, 108-116 (2016). https://doi.org/10.1016/j.aca.2016.08.015
  104. A. Camila, D. Lima, P. S. da Silva, and A. Spinelli, Chitosan-stabilized silver nanoparticles for voltammetric detection of nitrocompounds, Sens. Actuat. B: Chem., 196, 39-45 (2014). https://doi.org/10.1016/j.snb.2014.02.005
  105. C. Sun, Y. Zou, D. Wang, Z. Geng, W. Xu, F. Liu, and J. Cao, Construction of chitosan-Zn-based electrochemical biosensing platform for rapid and accurate assay of actin, Sensors, 18, 1865 (2018). https://doi.org/10.3390/s18061865
  106. H. V. Tran, C. D. Huynh, H. V. Tran, and B. Piro, Cyclic voltammetry, square wave voltammetry, electrochemical impedance spectroscopy and colorimetric method for hydrogen peroxide detection based on chitosan/silver nanocomposite, Arab. J. Chem., 11, 453-459 (2018). https://doi.org/10.1016/j.arabjc.2016.08.007
  107. J. Tashkhourian, S. F. Nami-Ana, and M. Shamsipur, Designing a modified electrode based on graphene quantum dotchitosan application to electrochemical detection of epinephrine, J. Mol. Liq., 266, 548-556 (2018). https://doi.org/10.1016/j.molliq.2018.06.093
  108. S. Rajabzadeh, G. H. Rounaghi, M. H. Arbab-Zavar, and N. Ashraf, Development of a dimethyl disulfide electrochemical sensor based onelectrodeposited reduced graphene oxide-chitosan modified glassycarbon electrode, Electrochim. Acta, 135, 543-549 (2014). https://doi.org/10.1016/j.electacta.2014.05.064
  109. B. Liu, H. T. Lian, J. F. Yin, and X. Y. Sun, Dopamine molecularly imprinted electrochemical sensor based on graphene-chitosan composite, Electrochim. Acta, 75, 108-114 (2012). https://doi.org/10.1016/j.electacta.2012.04.081
  110. W.-R. Zhao, T.-F. Kang, L.-P. Lu, and S.-Y. Cheng Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol, J. Electroanal. Chem., 818, 181-190 (2018). https://doi.org/10.1016/j.jelechem.2018.04.036
  111. Z. Wu, F. Guo, L. Huanga, and L. Wanga, Electrochemical nonenzymatic sensor based on cetyltrimethylammonium bromide and chitosan functionalized carbon nanotube modified glassy carbon electrode for the determination of hydroxymethanesulfinate in the presence of sulfite in foods, Food Chem., 259, 213-218 (2018). https://doi.org/10.1016/j.foodchem.2018.03.080
  112. M. Baccarina, F. A. Santosb, F. C. Vicentinic, V. Zucolottob, B. C. Janegitzd, and O. Fatibello-Filhoa, Electrochemical sensor based on reduced graphene oxide/carbon black/chitosan composite for the simultaneous determination of dopamine and paracetamol concentrations in urine samples, J. Electroanal. Chem., 799, 436-443 (2017). https://doi.org/10.1016/j.jelechem.2017.06.052
  113. W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, and J. Huang, Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin, Biosens. Bioelectron., 38, 163-169 (2012). https://doi.org/10.1016/j.bios.2012.05.017
  114. G. Yang, F. Zhao, and B. Zeng, Facile fabrication of a novel anisotropic gold nanoparticle-chitosan-ionic liquid/graphene modified electrode for the determination of theophylline and caffeine, Talanta, 127, 116-122 (2014). https://doi.org/10.1016/j.talanta.2014.03.029
  115. L. Magerusan, F. Pogacean, M. Coros, C. Socaci, S. Pruneanu, C. Leostean, and I. O. Pana, Green methodology for the preparation of chitosan/graphene nanomaterial through electrochemical exfoliation and its applicability in Sunset Yellow detection, Electrochim. Acta, 283, 578-589 (2018). https://doi.org/10.1016/j.electacta.2018.06.203
  116. Y. Hu, J. Li, Z. Zhang, H. Zhang, L. Luo, and S. Yao, Imprinted sol-gel electrochemical sensor for the determination of benzylpenicillin based on $Fe_3O_4@SiO_2$/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode, Anal. Chimica Acta., 698, 61-68 (2011). https://doi.org/10.1016/j.aca.2011.04.054
  117. J. Xia, X. Cao, Z. Wang, M. Yang, F. Zhang, B. Lu, F. Li, L. Xia, Y. Li, and Y. Xia, Molecularly imprinted electrochemical biosensor based onchitosan/ionic liquid-graphene composites modified electrodefor determination of bovine serum albumin, Sens. Actuat. B: Chem., 225, 305-311(2016). https://doi.org/10.1016/j.snb.2015.11.060
  118. D. Yuan, S. Chen, F. Hu, C. Wang, and R. Yuan, Non-enzymatic amperometric sensor of catechol and hydroquinone using Pt-Au-organosilica@ chitosan composites modified electrode, Sens. Actuat. B: Chem., 168, 193-199 (2012). https://doi.org/10.1016/j.snb.2012.03.085
  119. F. mollarasouli, K. Asadpour-Zeynali, S. Campuzano, P. Yanez-Sedeno, and J. M. Pingarron, Non-enzymatic hydrogen peroxide sensor based on graphene quantum dots-chitosan/methylene blue hybrid nanostructures, Electrochim. Acta, 246, 303-314 (2017). https://doi.org/10.1016/j.electacta.2017.06.003
  120. D. Rao, Q. Sheng, and J. Zheng, Preparation of flower-like Pt nanoparticles decorated chitosan-grafted graphene oxide and its electrocatalysis of hydrazine, Sens. Actuat. B: Chem., 236, 192-200 (2016). https://doi.org/10.1016/j.snb.2016.05.160
  121. C. Xiang, R. Li, B. Adhikari, Z. She, Y. Li, and H.-B. Kraatz, Sensitive electrochemical detection of Salmonella with chitosan-gold nanoparticles composite film, Talanta, 140, 122-127 (2015). https://doi.org/10.1016/j.talanta.2015.03.033
  122. Q. Zhang, Y. Qing, X. Huang, C. Li, and J. Xue, Synthesis of single-walled carbon nanotubes-chitosan nanocomposites for the development of an electrochemical biosensor for serum leptin detection, Mater. Lett., 211, 348-351(2018). https://doi.org/10.1016/j.matlet.2017.10.036
  123. H. Ciftci, U. Tamer, A. U. Metin, E. Alver, and N. Kizir, Electrochemical copper (II) sensor based on chitosan covered gold Nanoparticles, J Appl. Electrochem., 44, 563-572 (2014). https://doi.org/10.1007/s10800-014-0676-0
  124. Y. Si, J. Liu, A. Wang, S. Niu, and J. Wan, A chitosan-graphene electrochemical sensor for the determination of copper(II), Instrument. Sci. Technol., 43(3), 357-368 (2015). https://doi.org/10.1080/10739149.2014.994126
  125. Z. Mo, H. Liu, R. Hu, H. Gou, Z. Li, and R. Guo, Amino-functionalized graphene/chitosan composite as an enhanced sensing platform for highly selective detection of Cu(II), Ionics, 24(5), 1505-1513 (2017). https://doi.org/10.1007/s11581-017-2309-1
  126. Z. Guo, D.-D. Li, X.-K. Luo, Y.-H. Li, Q.-N. Zhao, M.-M. Li, Y.-T. Zhao, T.-S. Sun, and C. Ma, Simultaneous determination of trace Cd(II), Pb(II) and Cu(II) by differential pulse anodic stripping voltammetry using a reduced graphene oxide-chitosan/ poly-L-lysine nanocomposite modified glassy carbon electrode, J. Colloid Interf. Sci., 490, 11-22 (2017). https://doi.org/10.1016/j.jcis.2016.11.006
  127. C. I. Fort, L. C. Cotet, A. Vulpoi, G. L. Turdean, V. Danciu, L. Baia, and I.C. Popescu, Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II)and Cd(II), Sens. Actuat. B: Chem., 220, 712-719 (2015). https://doi.org/10.1016/j.snb.2015.05.124
  128. W. Wu, M. Jia, Z. Wang, W. Zhang, Q. Zhang, G. Liu, Z. Zhang, and P. Li, Simultaneous voltammetric determination of cadmium (II), lead(II), mercury(II), zinc(II), and copper(II) using a glassy carbon electrode modified with magnetite ($Fe_3O_4$) nanoparticles and fluorinated multiwalled carbon nanotubes, Microchim. Acta., 186, 97 (2019). https://doi.org/10.1007/s00604-018-3216-5
  129. S. Xiong, B. Yang, D. Cai, G. Qiu, and Z. Wu, Individual and simultaneous stripping voltammetric and mutual interference analysis of Cd(II), Pb(II)and Hg(II) with reduced graphene oxide-$Fe_3O_4$ nanocomposites, Electrochim. Acta, 185, 52-61 (2015). https://doi.org/10.1016/j.electacta.2015.10.114
  130. Z. Xu, X. Fan, Q. Ma, B. Tang, Z. Lu, J. Zhang, G. Mo, J. Ye, and J. Ye, A sensitive electrochemical sensor for simultaneous voltammetric sensing of cadmium and lead based on $Fe_3O_4$/multiwalled carbon nanotube/laser scribed graphene composites functionalized with chitosan modified electrode, Mater. Chem. Phys., 238, 121877 (2019). https://doi.org/10.1016/j.matchemphys.2019.121877
  131. G. Padmalaya, B. S. Sreeja, P. S. Kumar, and M. Arivanandhan, Chitosan zinc anchored oxide nanocompositeas modified electrochemical sensor for the detection of Cd(II) ions, Desal. Wat. Treat., 97, 295-303 (2017). https://doi.org/10.5004/dwt.2017.21612
  132. Y. Chu, F. Gao, F. Gao, and Q. Wang, Enhanced stripping voltammetric response of Hg(II), Cu(II), Pb(II) and Cd(II) by ZIF-8 and its electrochemical analytical application, J. Electroanal. Chem., 835, 293-300 (2019). https://doi.org/10.1016/j.jelechem.2019.01.053
  133. S. Prakash, T. Chakrabarty, A. K. Singh, and V. K. Shahi, Silver nanoparticles built-in chitosan modified glassy carbon electrode for anodic stripping analysis of As(III) and its removal from water, Electrochim. Acta, 72, 157-164 (2012). https://doi.org/10.1016/j.electacta.2012.04.025
  134. S. Saha and P.Sarkar, Differential pulse anodic stripping voltammetry for detection of As (III) by Chitosan-$Fe(OH)_3$ modified glassy carbon electrode: A new approach towards speciation of arsenic, Talanta, 158, 235-245 (2016). https://doi.org/10.1016/j.talanta.2016.05.053
  135. X. Dai, O. Nekrassova, M. E. Hyde, and R. G. Compton, Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes, Anal. Chem., 76, 5924-5929 (2004). https://doi.org/10.1021/ac049232x
  136. D. Tiwari, Zirlianngura, and S. M. Lee, Fabrication of efficient and selective total arsenic sensor using the hybrid materials modified carbon paste electrodes, J. Electroanal. Chem., 784, 109-114 (2017). https://doi.org/10.1016/j.jelechem.2016.11.051
  137. J. Lalmalsawmi, Zirlianngura, D. Tiwari, and S.-M. Lee, Low cost, highly sensitive and selective electrochemical detection of arsenic (III) using silane grafted based nanocomposite, Environ. Eng. Res., 25(4), 579-587 (2020). https://doi.org/10.4491/eer.2019.245
  138. A. Salimi, B. Pourbahram, S. Mansouri-Majd, and R. Hallaj, Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection, Electrochim. Acta, 156, 207-215 (2015). https://doi.org/10.1016/j.electacta.2014.12.146
  139. Z. Lu, S. Yang, Q. Yang, S. Luo, C. Liu, and Y. Tang, A glassy carbon electrode modified with graphene, gold nanoparticles and chitosan for ultrasensitive determination of lead(II), Microchim. Acta, 180, 555-562 (2013). https://doi.org/10.1007/s00604-013-0959-x
  140. T. Priya, N. Dhanalakshmi, and N. Thinakaran, Elctrochemical behaviour of Pb(II) on a heparin modified chitosan/graphene nanocomposite film coated glassy carbon electrode and its sensitive detection, Int. J. Biol. Macromol., 104, 672-680 (2017). https://doi.org/10.1016/j.ijbiomac.2017.06.082
  141. Y. Zuo, J. Xu, F. Jiang, X. Duan, L. Lu, H. Xing, T. Yang, Y. Zhang, G. Ye, and Y. Yu, Voltammetric sensing of Pb(II) using a glassy carbon electrode modified with composites consisting of $Co_3O_4$ nanoparticles, reduced graphene oxide and chitosan, J. Electroanal. Chem., 801, 146-152 (2017). https://doi.org/10.1016/j.jelechem.2017.07.046
  142. C. Hao, Y. Shen, J. Shen, K. Xu, X. Wang, Y. Zhao, and C. Ge, A glassy carbon electrode modified with bismuth oxide nanoparticles and chitosan as a sensor for Pb(II) and Cd(II), Microchim. Acta, 183, 1823-1830 (2016). https://doi.org/10.1007/s00604-016-1816-5
  143. M. Rajkumar, S. Thiagarajan, and S.-M. Chen, Electrochemical detection of arsenic in various water samples, Int. J. Electrochem. Sci., 6, 3164-3177 (2011).
  144. A. O. Idris, J. P. Mafa, N. Mabuba, and O. A. Arotiba, Nanogold modified glassy carbon electrode for the electrochemical detection of arsenic in water, Russ. J. Electrochem., 53(2),170-177 (2017). https://doi.org/10.1134/S1023193517020082
  145. X. Dai and R. G. Compton, Detection of As(III) via oxidation to As(V) using platinum nanoparticle modified glassy carbon electrodes: Arsenic detection without interference from copper, Analyst, 131, 516-521 (2006). https://doi.org/10.1039/b513686e
  146. H. Gu, Y. Yang, F. Chen, T. Liu, J. Jin, Y. Pan, and P. Miao, Electrochemical detection of arsenic contamination based on hybridization chain reaction and RecJf exonuclease-mediated amplification, Chem. Eng. J., 353, 305-310 (2018). https://doi.org/10.1016/j.cej.2018.07.137
  147. J.-F. Huang and H.-H. Chen, Gold-nanoparticle-embedded nafion composite modified on glassy carbon electrode for highly selective detection of arsenic(III), Talanta, 116, 852-859 (2013). https://doi.org/10.1016/j.talanta.2013.07.063
  148. M. Ghanei-Motlagh and M. A. Tahera, Novel imprinted polymeric nanoparticles prepared by sol- gel technique for electrochemical detection of toxic cadmium(II) ions, Chem. Eng. J., 327, 135-141 (2017). https://doi.org/10.1016/j.cej.2017.06.091
  149. G. Zhao, Y. Si, H. Wang, and G. Liu, A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry, Int. J. Electrochem. Sci., 11, 54-64 (2016).
  150. D. Martin-Yerga, I. Alvarez-Martos, M. C. Blanco-Lopez, C. S. Henry, and M. T. Fernandez-Abedul, Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes, Anal. Chimica Acta., 981, 24-33 (2017). https://doi.org/10.1016/j.aca.2017.05.027
  151. G. Zhao, H. Wang, G. Liu, and Z. Wang, Box-Behnken response surface design for the optimization of electrochemical detection of cadmium by square wave anodic stripping voltammetry on bismuth film/glassy carbon electrode, Sens. Actuat. B: Chem., 235, 67-73 (2016). https://doi.org/10.1016/j.snb.2016.05.051
  152. X. Wang and X. Guo, Ultrasensitive $Pb^{2+}$ detection based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles, Analyst, 134, 1348-1354 (2009). https://doi.org/10.1039/b822744f