• Title/Summary/Keyword: composite power

Search Result 1,098, Processing Time 0.029 seconds

A Study of JIT-GT Composite Plant Layout (JIT-GT 혼합설비 배치에 관한 연구)

  • Park Jin Hong;Yang Kwang Mo;Cho Jung Hyun;Kang Kyung Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.47-51
    • /
    • 2004
  • Facility layout for enterprise's competitive power strengthening and construction of offensive manufacture line and direction presentation for design of production management system that is new by operation improvement according to S company. In enterprise in JIT(Just in Time) system of leading persons affecting in productions among a lot of habitat factor analyze. It is that through equipment Layout among those factors enterprise my problem improve and serves enterprise's absolute ability cultivation. Even if it is JIT production main point that affect to apply the modular production to productive system among at equipment Layout, lot size, bottleneck session etc. worker's multi-function anger, change of demand factor and productive capacity add. 'S' Through enterprise's example, I wish to establish Korean medium and small enterprises' manufacturing industry style equipment Layout model by taken place effect interpretation.

  • PDF

Microwave Application in the Heating of Low-Loss Ceranmic Materials

  • Park, Seong-S.;Lee, Yoon-B.;Ryu, Su-C.;Jang, Youn-S.;Park, Hong-C.
    • Korean Journal of Materials Research
    • /
    • v.6 no.6
    • /
    • pp.576-584
    • /
    • 1996
  • The zirconia-alumina composite, a low loss material, was sucessfully sintered using a 2.45 GHz microwave radiation. The dense zirconia was used as a microware coupling aid. The effect of microwave power level on the heating rates of samples and the feasibility of microwave energy use in processign ceramec materials were obtained. It was also obtained how to accurately measure the temperature. According to the microwave heating theory, heating mechanisms were discussed.

  • PDF

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1391-1415
    • /
    • 2016
  • Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

Vibration analysis of FG nanobeams based on third-order shear deformation theory under various boundary conditions

  • Jandaghian, Ali Akbar;Rahmani, Omid
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.67-78
    • /
    • 2017
  • In this study, free vibration of functionally graded (FG) micro/nanobeams based on nonlocal third-order shear deformation theory and under different boundary conditions is investigated by applying the differential quadrature method. Third-order shear deformation theory can consider the both small-scale effects and quadratic variation of shear strain and hence shear stress along the FG nanobeam thickness. The governing equations are obtained by using the Hamilton's principle, based on third-order shear deformation beam theory. The differential quadrature (DQ) method is used to discretize the model and attain the natural frequencies and mode shapes. The properties of FG micro/nanobeam are assumed to be chanfged along the thickness direction based on the simple power law distribution. The effects of various parameters such as the nonlocal parameter, gradient index, boundary conditions and mode number on the vibration characteristics of FG micro/nanobeams are discussed in detail.

A Study on the UV Degradation characteristics of FRP by Plasma Surface Modification (플라즈마 표면개질에 따른 FRP의 자외선 열화 특성에 관한 연구)

  • Lim, K.B.;Lee, S.H.;You, D.H.;Hwang, M.W.;Lim, E.C.;Cho, G.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1544-1546
    • /
    • 2003
  • In this study, composite materials were put to dry interfacial treatment by use of plasma technology. It has been presented that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system Pressure, 100 W of discharge power, and 3 minutes of discharge time. The decrease in surface potential of charged samples by corona discharge indicates that the amount of accumulated electrical charges reduces and the charges that have been injected lessen rapidly when the duration of UV irradiation increases. The surface resistivity and the tensile strength of plasma treated samples, a longer UV irradiation time resulted in decreased insulation.

  • PDF

Load Modeling based on the System Identification (시스템 식별법에 의한 부하모델링)

  • Shim, K.B.;Lee, B.Y.;Kim, J.H.;Lee, H.S.;Choo, J.B.;Lee, S.J.;Chun, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.148-151
    • /
    • 1993
  • Load models for the analysis and simulation of power system are often introduced when the more accurate result is required. This work presents a single expressed load model as T-equivalent circuit of induction motor, for the composite characteristics of various loads. The parameters of the proposed load model are identified based on the system identification method as Recursive Least Square identification method. Case study results show the accuracy of proposed load model, and compared with some field measurements.

  • PDF

Characteristics of Surface Flashover on Partially Immersed of Spacer in Liquid Nitrogen (액체질소 중에서 spacer의 부분적 침적에 대한 연면 방전특성)

  • 김영석;이병성;백승명;정종만;정순용;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.2
    • /
    • pp.177-182
    • /
    • 2000
  • Composite insulation system of liquid nitrogen and solid spacer is widely applied in high temperature superconduction power machine. This study has three step procedure. As follow, first step is composition of parallel deposited electrode and vertically deposited electrode along the direction of immersion in liquid nitrogen(LN2). Second step is investigation into surface flashover voltage of solid spacer under partially immersed in LN2, and last step is comparison the result of this research with that of fully immersed in LN2 and at cryogenic temperature gaseous nitrogen(GN2). This result presented that surface flashover voltage along solid spacer half immersed in LN2 was almost the same as that of fully immersed spacer when the thickness of spacer(t) was t<10mm. In the case of t> 10mm, however, spacer flashover voltage was equal to that obtained in GN2 at cryogenic temperature. And the immersed direction functions as role of deciding the difference of surface flashover voltage.

  • PDF

A Study on the Improvement of Interfacial Properties of Epoxy Composites (에폭시 복합재료의 계면특성 향상에 관한 연구)

  • Lim, K.B.;Lee, S.H.;You, D.H.;Yuk, J.H.;Hwang, M.H.;Kim, Y.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.124-126
    • /
    • 2002
  • In this study, composite materials were put to dry interfacial treatment by use of plasma technology. It has been presented that the optimum parameters for the best wettability of the samples at the time of generation of plasma were oxygen atmosphere, 0.1 torr of system pressure, 100 W of discharge power, and 3 minutes of discharge time. Also, the surface resistance rate, dielectric property and tensile strength were improved.

  • PDF

Electrochemical Characteristics of supercapacitor using organic-inorganic electrode (유-무기 복합전극을 이용한 수퍼커패시터의 전기화학적 특성)

  • Kim, Hong-Il;Kim, Sang-Gil;Yuk, Gyung-Chang;Park, Soo-Gil
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.164-166
    • /
    • 2002
  • Over the past two decades, the electrochemical supercapaictors are receiving growing attention due to their possible applications as power backup in electronic equipment and electrical vehicles. Both of amorphous cobalt oxide and manganese dioxide were prepared by sol-gel process reported in our previous work. Nano-structured supramolecular oligomer of 1,5-diamino anthraquinone(DAAQ) coated metal oxides were successfully prepared by electrochemical oxidation from an acidic non-aqueous medium. We established process parameters of the technique for the formation of nano-structured materials. Furthermore, improved the capacitive properties of the nano structured metal oxide electrodes using controlled solution chemistry. $CoO_2$ and $MnO_2$-based composite electrode showed relatively good electrochemical behaviors in acidic electrolyte system with respect to specific capacity and scan rate dependency

  • PDF

Static analysis of singly and doubly curved panels on rectangular plan-form

  • Bahadur, Rajendra;Upadhyay, A.K.;Shukla, K.K.
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.659-670
    • /
    • 2017
  • In the present work, an analytical solution for the static analysis of laminated composites, functionally graded and sandwich singly and doubly curved panels on the rectangular plan-form, subjected to uniformly distributed transverse loading is presented. Mathematical formulation is based on the higher order shear deformation theory and principle of virtual work is applied to derive the equations of equilibrium subjected to small deformation. A solution methodology based on the fast converging finite double Chebyshev series is used to solve the linear partial differential equations along with the simply supported boundary condition. The effect of span to thickness ratio, radius of curvature to span ratio, stacking sequence, power index are investigated. The accuracy of the solution is checked by the convergence study of non-dimensional central deflection and moments. Present results are compared with those available in the literature.