• Title/Summary/Keyword: composite nanofiber

Search Result 89, Processing Time 0.02 seconds

Fabrication of Carbon Nanofiber/Cu Composite Powder by Electroless Plating and Microstructural Evolution during Thermal Exposure (무전해 도금에 의한 탄소나노섬유/Cu 복합 분말 제조 및 열적 안정성)

  • Kim In-soo;Lee Sang-Kwan
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.39-42
    • /
    • 2004
  • Carbon nanofiber/Cu composite powder has been fabricated by electroless plating process. Microstructural evolution of the composite powder after heat treatment under vacuum, hydrogen and air environment was investigated. A dispersed carbon nanofiber coated by copper was produced at the as-plated condition. Carbon nanofiber is coated uniformly and densely with the plate shaped copper particles. The copper plates on the carbon nanofiber aggregate during the thermal exposure at elevated temperature in vacuum and hydrogen in order to reduce surface energy. The thermal exposure of the composite powder in air at $400^{\circ}C$ for 3 hours leads to the spherodization of the composite powder owing to oxidation of copper.

  • PDF

Preparation and Characterization of Carbon Nanofiber Composite Coated Fabric-Heating Elements (탄소나노섬유복합체를 이용한 의류용 직물발열체의 제조 및 특성)

  • Kang, Hyunsuk;Lee, Sunhee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.247-256
    • /
    • 2015
  • This study prepared fabric-heating elements of carbon nanofiber composite to characterize morphologies and electrical properties. Carbon nanofiber composite was prepared with 15wt% PVDF-HFP/acetone solution, and 0, 1, 2, 4, 8, and 16wt% carbon nanofiber. Dispersion of solution was conducted with stirring for a week, sonification for 24 hours, and storage for a month, until coating. Carbon nanofiber composite coated fabrics were prepared by knife-edge coating on nylon fabrics with a thickness of 0.1mm. The morphologies of carbon nanofiber composite coated fabrics were measured by FE-SEM. Surface resistance was determined by KS K0555 and worksurface tester. A heating-pad clamping device connected to a variable AC/DC power supply was used for the electric heating characteristics of the samples and multi-layer fabrics. An infrared camera applied voltages to samples while maintaining a certain distance from fabric surfaces. The results of morphologies indicated that the CNF content increased specifically to the visibility and presence of carbon nanofiber. The surface resistance test results revealed that an increased CNF content improved the performance of coated fabrics. The results of electric heating properties, surface temperatures and current of 16wt% carbon nanofiber composite coated fabrics were $80^{\circ}C$ and 0.35A in the application of a 20V current. Carbon nanofiber composite coated fabrics have excellent electrical characteristics as fabric-heating elements.

Physical and Mechanical Properties of The Lignin-based Carbon Nanofiber-reinforced Epoxy Composite (에폭시 강화 리그닌 기반 나노탄소섬유 복합재료의 특성)

  • Youe, Won-Jae;Lee, Soo-Min;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.406-414
    • /
    • 2016
  • The lignin-based carbon nanofiber reinforced epoxy composite has been prepared by immersing carbon nanofiber mat in epoxy resin solution in order to evaluate the physical and mechanical properties. The thermal and mechanical properties of the carbon nanofiber reinforced epoxy composite were analyzed using thermogravimetric analysis (TGA), differential scanning calorimeter (DSC) and tensile tester. It was found that the thermal properties of the carbon nanofiber reinforced epoxy composite improved, with its glass-transition temperature ($T_g$) increased from $90.7^{\circ}C$ ($T_g$ of epoxy resin itself) to $106.9^{\circ}C$. The tensile strengths of carbon nanofiber mats made from both lignin-g-PAN copolymer and PAN were 7.2 MPa and 9.4 MPa, respectively. The resulting tensile strength of lignin-based carbon nanofiber reinforced epoxy composite became 43.0 MPa, the six times higher than that of lignin-based carbon nanofiber mats. The carbon nanofibers were pulled out after the tensile test of the carbon nanofiber reinforced epoxy composite due to high tensile strength (478.8 MPa) of an individual carbon nanofiber itself as well as low interfacial adhesion between fibers and matrices, confirmed by the SEM analysis.

Electrospun Nanofiber and its Applications (전기방사 나노섬유와 응용)

  • 천석원
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.59-62
    • /
    • 2003
  • 최근 나노기술에 대한 폭발적인 관심과 함께 전기방사기술은 나노섬유를 제조할 수 있는 강력한 수단을 평가되고 있으며, 지금까지 거의 3종류 이상의 고분자들에 대한 나노섬유가 제조되었다. 또한, 나노섬유기술은 전통적인 섬유분야를 초월하여 매우 다양한 산업분야에 응용가능성이 있다. 따라서 다양한 분야에서 나노섬유를 활용하는 응용연구가 보다 활성화되어야 할 것이다.

  • PDF

Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 기계적 물성)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.31-34
    • /
    • 2004
  • Carbon nanofiber exhibits superior and often unique characteristics of mechanical, electrical chemical and thermal properties. In this study, For improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the effect of dispersion, The dispersion methods of solution blending and mechanical mixing were used. The mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by scanning electron microscope (SEM). Mechanical properties were measured by universal testing Machine (UTM).

  • PDF

A Study on Mechanical Properties of Carbon Nanofiber/Epoxy Composites with Dispersion Methods (분산 방법에 따른 탄소나노섬유/에폭시 복합재료의 기계적 물성에 관한 연구)

  • Kong Jin-Woo;Chung Sang-Su;Kim Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.151-154
    • /
    • 2004
  • Despite of the excellent properties of carbon nanofiber, The properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, For improvement properties of carbon nanofiber filled epoxy composites, the effect of dispersion was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Mixing of solution blending method was used using ultrasonic. Dispersion of carbon nanofiber was observed by optical microscope and scanning electron microscope (SEM). UV adsorption and turbidity measured by UV spectrometer was used for the comparison of dispersion of carbon nanofiber.

  • PDF

Manufacture and Mechanical Properties of Carbon Nanofiber Reinforced Hybrid Composites (탄소나노섬유가 강화된 하이브리드 복합재료의 제조 및 기계적 특성)

  • Chung Sang-Su;Park Ji-Sang;Kim Tae-Wook;Kong Jin-Woo
    • Composites Research
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2005
  • Carbon nanofiber exhibits superior and of ien unique characteristics of mechanical, electrical, chemical and thermal properties. Despite of the excellent properties of carbon nanofiber, the properties of carbon nanofiber filled polymer composites were not increased largely. The reason is that it is still difficult to ensure the uniform dispersion of carbon nanofiber in a polymer matrix. In this study, for improvement of the mechanical properties of composites, carbon nanofiber reinforced hybrid composites was investigated. For the dispersion of carbon nanofiber. solution blending method using ultrasonic was used. Dispersion of carbon nanoifiber was observed by scanning electron microscope (SEH). Mechanical properties were measured by universal testing machine(UTM).

Development of Carbon Nanofiber Reinforced Cu Matrix Composites Using Liquid Pressing Process (액상 성형 가압법을 이용한 탄소나노섬유 강화 Cu 기지 나노 복합재료 개발)

  • 이상관;김두현;엄문광;하동호;김상식
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.50-53
    • /
    • 2003
  • Carbon nannofiber reinforced Cu matrix composite has potential applications for electrically conducting materials having high strength and electrical conductivity. In this study, we have developed fabrication technology of the nanocomposites using a liquid pressing process. The process is to use the low pressure for infiltration of Cu melt into carbon nanofiber mat as the Cu melt is pressurized directly. The minimum pressure required for infiltration was calculated from force balance equation, permeability measurement and compaction behavior of carbon nanofiber. Also, the melting temperature and the holding time have been optimized.

  • PDF

Property Studies of PAN/PVdF Composite Nanofiber Manufactured from Electrospinning (전기방사법으로 제조된 PAN/PVdF 복합나노섬유의 특성연구)

  • Yun, Jung-Hyun;Choi, Dong-You
    • 전자공학회논문지 IE
    • /
    • v.46 no.3
    • /
    • pp.6-11
    • /
    • 2009
  • In this paper, manufactured composite nanofiber by electrospinning that make spinning solvent according to weight of PAN/PVdF. PVdF content of composite nanofiber decreases, diameter of fiber decreased. Result that measure contact angle to confirm hydrophile property of PAN/PVdF composite nanofiber, PVdF content increases, could confirm that contact angle with water increases. After leave filter measurement sample for 25 hours in temperature of $40^{\circ}C$, humidity of 85%, result PAN/PVdF composite nanofiber that estimate efficiency could confirm that display performance of HEPA more than 99.95% and ULPA more than 99.999%. And fiber diameter is small, could confirm that filter performance increases. Tensile strength of bulk of PAN/PVdF composite nanofiber was 5-8MPa, expansion 100-300%. And strength and expansion could know that increase according as PVdF's content increases. Tensile strength was 3-8MPa degree after annealing PAN/PVdF composite nanofiber during 2 hours in 120t. Tensile strength was no change almost by annealing, and expansion could know that decrease.

Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries

  • Wang, Wan Lin;Park, Ju-Young;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.338-343
    • /
    • 2014
  • A $Fe_3O_4$-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining $Fe_3O_4$ and graphite nanofiber (GNF) together in a $N_2$ atmosphere. Using this $Fe_3O_4$-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using $Fe_3O_4$-graphite ($Fe_3O_4$-G). The $Fe_3O_4$-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient ($2.29{\times}10^{-9}cm^2s^{-1}$) than did the $Fe_3O_4$-G (10%) ($3.17{\times}10^{-10}cm^2s^{-1}$). At a current density of $100mA\;g^{-1}$, the $Fe_3O_4$-GNF (10 wt%) anode showed a higher reversible capacity ($1,031mAh\;g^{-1}$) than did the $Fe_3O_4$-G (10%) anode ($799mAh\;g^{-1}$). Moreover, the $Fe_3O_4GNF$ electrodes showed good cycling performance without the addition of a conductive material.