• Title/Summary/Keyword: composite model

Search Result 3,648, Processing Time 0.034 seconds

An Exploratory Study of Psychological and Biosocial Variables Based in the Latent Profile Analysis of Temperament and Character among College Student (대학생의 기질 및 성격 잠재 프로파일에 따른 심리 및 생물사회적 변인의 탐색적 연구)

  • Jeong, Su Dong;Lee, Soo Jin
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.165-178
    • /
    • 2022
  • In this study, to explore the psychological and biosocial characteristics of the temperament and character's latent profile group, first, the latent group was identified with the seven variables of the Temperament and Character Inventory(TCI), and second, the difference between the psychological and biosocial characteristics of three identified latent groups. A total of 287 university students participated, and the latent groups was identified through latent profile analysis, a human-centeted statistical method, using Cloninger's TCI, Cognitive Emotion Regulation Questionnaire(CERQ), Positive Affect and Negative Affect Schedule(PANAS), Composite Scale of Moriningness(CSM), Pittsburgh Sleep Qulity Index(PSQI), and Satisfaction With Life Scale(SWLS). As result, first, three latent groups were identified through latent profile analysis using the seven variables of TCI. second, significant differences were identified in CERQ, PANAS, which are psychological variables, CSM, PSQI, and SWLS, which are biosocial variables among the latent groups. In conclusion, the importance of Self-Directedness(SD), a character factor that can be developed rather than Harm-Avoidance(HA), a temperament factor from nature, was confirmed. And the necessity of follow-up studies on psychological and biosocial variables for adaptive and mature personality was discussed.

3D Bioprinted GelMA/PEGDA Hybrid Scaffold for Establishing an In Vitro Model of Melanoma

  • Duan, Jiahui;Cao, Yanyan;Shen, Zhizhong;Cheng, Yongqiang;Ma, Zhuwei;Wang, Lijing;Zhang, Yating;An, Yuchuan;Sang, Shengbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • Due to the high incidence of malignant melanoma, the establishment of in vitro models that recapitulate the tumor microenvironment is of great biological and clinical importance for tumor treatment and drug research. In this study, 3D printing technology was used to prepare GelMA/PEGDA composite scaffolds that mimic the microenvironment of human malignant melanoma cell (A375) growth and construct in vitro melanoma micro-models. The GelMA/PEGDA hybrid scaffold was tested by the mechanical property, cell live/dead assay, cell proliferation assay, cytoskeleton staining and drug loading assay. The growth of tumor cells in two- and three-dimensional culture systems and the anti-cancer effect of luteolin were evaluated using the live/dead staining method and the Cell Counting Kit-8 (CCK-8) method. The results showed a high aggregation of tumor cells on the 3D scaffold, which was suitable for long-term culture. Cytoskeleton staining and immunofluorescent protein staining were used to evaluate the degree of differentiation of tumor cells under 2D and 3D culture systems. The results indicated that 3D bioprinted scaffolds were more suitable for tumor cell expansion and differentiation, and the tumor cells were more aggressive. In addition, luteolin was time- and dose-dependent on tumor cells, and tumor cells in the 3D culture system were more resistant to the drug.

The Design and implementation of LVC Integrated Architecture Technology building division-level L-V-C Interoperability Training System (사단급 L-V-C연동훈련체계 구축을 위한 LVC통합아키텍쳐기술 설계 및 구현)

  • Won, Kyoungchan;Koo, JaHwan;Lee, Hojun;Kim, Yong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.334-342
    • /
    • 2021
  • In Korea, the training is performed through independent environments without interoperability among L-V-C systems. In the L system, training for large units is limited due to civil complaints at the training grounds and road restrictions. The V system is insufficient in training related to tactical training, and the C system lacks practicality due to a lack of combat friction elements. To achieve synchronicity and integration training between upper and lower units, it is necessary to establish a system to ensure integrated training for each unit by interoperating the currently operating L, V, and C systems. The interoperability between the C-C system supports Korea-US Combined Exercise. On the other hand, the actual development of the training system through the interoperability of L, V, and C has not been made. Although efforts are being made to establish the L, V, and C system centering on the Army, the joint composite battlefield and LVC integrated architecture technology are not yet secured. Therefore, this paper proposes a new plan for the future training system by designing and implementing the LVC integrated architecture technology, which is the core technology that can build the L-V-C interoperability training system. In conclusion, a division-level L-V-C interoperability training system can be established in the future by securing the LVC integrated architecture technology.

Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures (비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석)

  • Lee, Tae Hee;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.215-226
    • /
    • 2022
  • Significant efforts have been devoted to developing high-performance composite materials by emulating the structure of biological creatures with superior mechanical characteristics. Nacre has been one of the most sought-after natural structures due to its exceptional fracture toughness compared with the constituent materials. However, the effect of manipulating the nacre-like geometry on the impact performance has not been fully investigated thus far. In this study, composites of randomly manipulated nacreous geometry are numerically developed and the impact performance is analyzed. We develop an algorithm by which the planar area of platelets in the nacre-like design is randomly resized. Thereafter, the numerical models of nonuniform nacre-patterned multi-layer structures are developed and the drop-weight impact simulation is performed. The impact behaviors of the model are evaluated by using the ratio of absorbed energy, the von Mises stress distribution, and the impact force-time curve. Therefore, the effect of the geometric irregularity on the nacre-patterned design is elucidated. This insight can be efficiently utilized in establishing the optimum design of the nacre-patterned structure.

Optimization of O/W Emulsion with Natural Surfactant Extracted from Medicago sativa L. using CCD-RSM (CCD-RSM을 이용한 알팔파 추출물인 천연계면활성제가 포함된 O/W 유화액의 최적화)

  • Seheum Hong;Jiachen Hou;Seung Bum Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.137-143
    • /
    • 2023
  • In this study, natural surfactants were extracted from Medicago sativa L. The O/W emulsification processes with the extracted natural surfactants were optimized using central composite design model-response surface methodology (CCD-RSM) and a 95% confidence interval was used to confirm the reasonableness of the optimization. Herein, independent parameters were the ratio of saponins to total surfactant (P), amount of surfactant (W), and emulsification speed (R), whereas the reaction parameters were the emulsion stability index (ESI), mean droplet size (MDS), and viscosity (V). Using the multiple reaction, the optimal conditions for the ratio of saponins to total surfactant, amount of surfactant, and emulsification speed for O/W emulsification were 49.5%, 9.1 wt%, and 6559.5 rpm, respectively. Under these optimal conditions, the expected values of ESI, MDS, and V as the reaction parameters were 89.9%, 1058.4 nm, and 1522.5 cP, respectively. The values of ESI, MDS, and V from these expected values were 88.7%, 1026.4 nm, and 1486.5 cP, respectively, and the average experimental error for validating the accuracy was about 2.3 (± 0.4)%. Therefore, it was possible to design an optimization process for evaluating the O/W emulsion process with Medicago sativa L. using CCD-RSM.

Simulation of the effect of inclusions length and angle on the failure behavior of concrete structure under 3D compressive test: Experimental test and numerical simulation

  • Mohammad Saeed, Amini;Vahab, Sarfarazi;Kaveh, Asgari;Xiao, Wang;Mojtaba Moheb, Hoori
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2023
  • Man-made structure materials like concrete usually contain inclusions. These inclusions affect the mechanical properties of concrete. In this investigation, the influence of inclusion length and inclination angle on three-dimensional failure mechanism of concrete under uniaxial compression were performed using experimental test and numerical simulation. Approach of acoustic emission were jointly used to analyze the damage and fracture process. Besides, by combining the stress-strain behavior, quantitative determination of the thresholds of crack stress were done. concrete specimens with dimensions of 120 mm × 150 mm × 100 mm were provided. One and two holes filled by gypsum are incorporated in concrete samples. To build the inclusion, firstly cylinder steel tube was pre-inserting into the concrete and removing them after the initial hardening of the specimen. Secondly, the gypsum was poured into the holes. Tensile strengths of concrete and gypsum were 2.45 MPa and 1.5 MPa, respectively. The angle bertween inclusions and axial loadind ary from 0 to 90 with increases of 30. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Diameter of the hole was 20 mm. Entirely 20 various models were examined under uniaxial test. Simultaneous with experimental tests, numerical simulation (Particle flow code in two dimension) were carried out on the numerical models containing the inclusions. The numerical model were calibrated firstly by experimental outputs and then failure behavior of models containing inclusions have been investigated. The angle bertween inclusions and axial loadind vary from 0 to 90 with increases of 15. The length of inclusion vary from 25 mm to 100 mm with increases of 25 mm. Entirely 32 various models were examined under uniaxial test. Loading rate was 0.05 mm/sec. The results indicated that when inclusion has occupied 100% of sample thickness, two tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusion has occupied 75% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. When inclusions have occupied 50% and 25% of sample thickness, four tensile cracks originated from boundaries of sample and spread parallel to the loading direction until being integrated together. Also the inclusion was failed by one tensile crack. The compressive strength of samples decease with the decreases of the inclusions length, and inclusion angle had some effects on that. Failure of concrete is mostly due to the tensile crack. The behavior of crack, was affected by the inclusion length and inclusion number.

The Analysis of Hysteresis in Youth Unemployment (청년실업의 이력현상 분석)

  • Kim, Namju
    • Economic Analysis
    • /
    • v.25 no.2
    • /
    • pp.96-131
    • /
    • 2019
  • Initially entering into the job market during hard times with unfavorable market institutions has a persistent, negative effect on young workers' subsequent employment. This paper analyzes hysteresis in youth unemployment by using a composite fixed-effect panel data model. Data sets for the age-cohort unemployment rate and for labor market institutions are constructed from OECD statistics from 21 advanced economies, including Korea, from 1985 to 2017, and are then readjusted to match with the peculiarities of the Korean market. In Korea, with a less-aggressive stance on active labor market policy spending, a male worker who experiences a one percentage point higher youth unemployment rate when he was 20- to 29-years-old has a 0.146 percentage point higher unemployment rate at the ages of 30-to 34-years-old and a 0.035 percentage point higher unemployment rate at the age of 35- to 39-years-old. These figures are larger than those in most countries that have more aggressive spending schemes. These findings point out that hysteresis in the Korean labor market can be mitigated by expanding active labor market policy spending more aggressively and more effectively.

CT-Based Leiden Score Outperforms Confirm Score in Predicting Major Adverse Cardiovascular Events for Diabetic Patients with Suspected Coronary Artery Disease

  • Zinuan Liu;Yipu Ding;Guanhua Dou;Xi Wang;Dongkai Shan;Bai He;Jing Jing;Yundai Chen;Junjie Yang
    • Korean Journal of Radiology
    • /
    • v.23 no.10
    • /
    • pp.939-948
    • /
    • 2022
  • Objective: Evidence supports the efficacy of coronary computed tomography angiography (CCTA)-based risk scores in cardiovascular risk stratification of patients with suspected coronary artery disease (CAD). We aimed to compare two CCTA-based risk score algorithms, Leiden and Confirm scores, in patients with diabetes mellitus (DM) and suspected CAD. Materials and Methods: This single-center prospective cohort study consecutively included 1241 DM patients (54.1% male, 60.2 ± 10.4 years) referred for CCTA for suspected CAD in 2015-2017. Leiden and Confirm scores were calculated and stratified as < 5 (reference), 5-20, and > 20 for Leiden and < 14.3 (reference), 14.3-19.5, and > 19.5 for Confirm. Major adverse cardiovascular events (MACE) were defined as the composite outcomes of cardiovascular death, nonfatal myocardial infarction (MI), stroke, and unstable angina requiring hospitalization. The Cox model and Kaplan-Meier method were used to evaluate the effect size of the risk scores on MACE. The area under the curve (AUC) at the median follow-up time was also compared between score algorithms. Results: During a median follow-up of 31 months (interquartile range, 27.6-37.3 months), 131 of MACE were recorded, including 17 cardiovascular deaths, 28 nonfatal MIs, 64 unstable anginas requiring hospitalization, and 22 strokes. An incremental incidence of MACE was observed in both Leiden and Confirm scores, with an increase in the scores (log-rank p < 0.001). In the multivariable analysis, compared with Leiden score < 5, the hazard ratios for Leiden scores of 5-20 and > 20 were 2.37 (95% confidence interval [CI]: 1.53-3.69; p < 0.001) and 4.39 (95% CI: 2.40-8.01; p < 0.001), respectively, while the Confirm score did not demonstrate a statistically significant association with the risk of MACE. The Leiden score showed a greater AUC of 0.840 compared to 0.777 for the Confirm score (p < 0.001). Conclusion: CCTA-based risk score algorithms could be used as reliable cardiovascular risk predictors in patients with DM and suspected CAD, among which the Leiden score outperformed the Confirm score in predicting MACE.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Three-Dimensional Myocardial Strain for the Prediction of Clinical Events in Patients With ST-Segment Elevation Myocardial Infarction

  • Wonsuk Choi;Chi-Hoon Kim;In-Chang Hwang;Chang-Hwan Yoon;Hong-Mi Choi;Yeonyee E Yoon;In-Ho Chae;Goo-Yeong Cho
    • Journal of Cardiovascular Imaging
    • /
    • v.30 no.3
    • /
    • pp.185-196
    • /
    • 2022
  • BACKGROUND: Two-dimensional (2D) strain provides more predictive power than ejection fraction (EF) in patients with ST-elevation myocardial infarction (STEMI). 3D strain and EF are also expected to have better clinical usefulness and overcome several inherent limitations of 2D strain. We aimed to clarify the prognostic significance of 3D strain analysis in patients with STEMI. METHODS: Patients who underwent successful revascularization for STEMI were retrospectively recruited. In addition to conventional parameters, 3D EF, global longitudinal strain (GLS), global area strain (GAS), as well as 2D GLS were obtained. We constructed a composite outcome consisting of all-cause death or re-hospitalization for acute heart failure or ventricular arrhythmia. RESULTS: Of 632 STEMI patients, 545 patients (86.2%) had a reliable 3D strain analysis. During median follow-up of 49.5 months, 55 (10.1%) patients experienced the adverse outcome. Left ventricle EF, 2D GLS, 3D EF, 3D GLS, and 3D GAS were significantly associated with poor outcomes. (all, p < 0.001) The maximum likelihood-ratio test was performed to evaluate the additional prognostic value of 2D GLS or 3D GLS over the prognostic model consisting of clinical characteristics and EF, and the likelihood ratio was 15.9 for 2D GLS (p < 0.001) and 1.49 for 3D GLS (p = 0.22). CONCLUSIONS: The predictive power of 3D strain was slightly lower than the 2D strain. Although we can obtain 3D strains, volume, and EF simultaneously in same cycle, the clinical implications of 3D strains in STEMI need to be investigated further.