• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.031 seconds

Effect of nano-composite materials on repair of ligament injury in sports detoxification

  • Lu, Chunxia;Lu, Gang;Dong, Weixin;Liu, Xia
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.247-257
    • /
    • 2022
  • Extraordinary properties of nanocomposites make them a primary replacement for many conventional materials. Anterior cruciate ligament (ACL) reconstruction, which is a frequent surgery in sport activities, is one of the fields in which nanocomposites could be utilized. In the present study, the mechanical properties of different porous scaffolds made from graphene nano-composites are presented ad load bearing capacity of these materials is calculated using finite element method. The numerical results are further compared with experimental published data. In addition, several geometrical and material parameters are analyzed to find the best configuration of nanocomposite scaffolds in reconstruction of ACL. Moreover, coating of detoxification chemicals are extremely easier on the nano-structured materials than conventional one. Detoxification potential of nano-composites in the injured body are also discussed in detail. The results indicated that nano-composite could be successfully used in place of auto- and allografts and also instead of conventional metallic screws in reconstruction of ACL.

Analysis of Strain Distribution According to Change in the Vacancy Shape of the Lightweight Dual-Phase Structure (경량화된 이중상 구조의 중공 형태 변화에 따른 변형률 분포 분석)

  • Lee, J.A.;Kim, Y.J.;Jeong, S.G.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.267-272
    • /
    • 2022
  • A dual-phase structure refers to a material with two different phases of components or crystal structures. In this study, we analyze the stress distributions for harmonic and composite structured materials which are a kind of dual-phase structure materials. The finite element method (FEM) was used to progress compression test to analyze the strain distribution, and rather than constituted of a fully dense material, a dual-phase structure was designed to make a lightweight structure that has different shapes and volumes of vacancy in each case. As a result of each case, the dual-phase structured materials showed different stress distribution patterns and based on this, the cause was identified through the research.

Structural Dynamic System Reconstruction for Modal Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.150-150
    • /
    • 2000
  • We as modal parameter estimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of multivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre- and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios on be estimated using tile coordinates of the structural system reconstructed fro the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting.

  • PDF

Structural Dynamic System Reconstruction for Model Parameter Estimation

  • Kim, H. Y.;W. Hwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.527-527
    • /
    • 2000
  • Wean modal parameter estiimation technique by developing a residual based system reconstruction and using the system matrix coordinate transformation. The modal parameters can be estimated from and residues of the system transfer functions expressed in modal coordinate basis, derived from the state space system matrices. However, for modal parameter estimation of mllltivariable and order structural systems over broad frequency bands, this non-iterative algorithm gives high accuracy in the natural fre and damping ratios. From vibration tests on cross-ply and angle-ply composite laminates, the natural frequencies and damping ratios can be estimated using the coordinates of the structural system reconstructed from the experimental frequency response. These results are compared with those of finite element analysis and single-degree-of-freedom curve-fitting..

  • PDF

The behavior of adhesive joints affected by the geometry and stacking sequence of composite materials

  • Ait Kaci Djafar;Zagane Mohammed El Sallah;Moulgada Abdelmadjid;Sahli Abderahmane
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.609-623
    • /
    • 2023
  • The objective of this study is to investigate the distribution of von Mises stress, peeling stress, and shear stress in the adhesive layer used to bond two composite panels, considering various parameters using a three-dimensional finite element method. The stiffness of the materials and the effect of the stacking order on the amount of load transferred to the adhesive layer were examined to determine which type of laminate generates less stress at the bond line. The study analyzed six different stacking sequences, all with a common first layer in contact with the adhesive and a 0° orientation. Additionally, the impact of using hybrid composites on reducing bond line stress was investigated.

Multi-material polygonal topology optimization for functionally graded isotropic and incompressible linear elastic structures

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Dongkyu Lee
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.261-270
    • /
    • 2024
  • This paper proposes an effective method for optimizing the structure of functionally graded isotropic and incompressible linear elastic materials. The main emphasis is on utilizing a specialized polytopal composite finite element (PCE) technique capable of handling a broad range of materials, addressing common volumetric locking issues found in nearly incompressible substances. Additionally, it employs a continuum model for bi-directional functionally graded (BFG) material properties, amalgamating these aspects into a unified property function. This study thus provides an innovative approach that tackles diverse material challenges, accommodating various elemental shapes like triangles, quadrilaterals, and polygons across compressible and nearly incompressible material properties. The paper thoroughly details the mathematical formulations for optimizing the topology of BFG structures with various materials. Finally, it showcases the effectiveness and efficiency of the proposed method through numerous numerical examples.

Stress distribution of Class V composite resin restorations: A three-dimensional finite element study (5급 복합레진수복물의 응력분포에 관한 3차원 유한요소법적 연구)

  • Park, Jeong-Kil;Hur, Bock;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2008
  • This study was to investigate the influence of composite resins with different elastic modulus, cavity modification and occlusal loading condition on the stress distribution of restored notch-shaped noncarious cervical lesion using 3-dimensional (3D) finite element (FE) analysis. The extracted maxillary second premolar was scanned serially with Micro-CT. The 3D images were processed by 3D-DOCTOR. ANSYS was used to mesh and analyze 3D FE model. A notch-shaped cavity and a modified cavity with a rounded apex were modeled. Unmodified and modified cavities were filled with hybrid or flowable resin. After restoration, a static load of 500N was applied in a point-load condition at buccal cusp and palatal cusp. The stress data were analyzed using analysis of principal stress. The results were as follows: 1. In the unrestored cavity, the stresses were highly concentrated at mesial CEJ and lesion apex and the peak stress was observed at the mesial point angle under both loading conditions. 2. After restoration of the cavity, stresses were significantly reduced at the lesion apex, however cervical cavosurface margin, stresses were more increased than before restoration under both loading conditions. 3. When restoring the notch-shaped lesion, material with high elastic modulus worked well at the lesion apex and material with low elastic modulus worked well at the cervical cavosurface margin. 4. Cavity modification the rounding apex did not reduce compressive stress, but tensile stress was reduced.

Analysis of Nonlinear Behaviors of Shotcrete-Steel Support Lining Considering the Axial Force Effects (축력의 영향을 고려한 숏크리트-강지보 합성 라이닝의 비선형 거동 분석)

  • Yu, Jeehwan;Kim, Jeongsoo;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.2
    • /
    • pp.357-367
    • /
    • 2017
  • Bending and axial forces simultaneously occur at the cross-section of a shotcrete lining reinforced with steel supports due to the tunnel geometry. The shotcrete has changing flexural stiffness depending on the axial forces and, as a result, severely nonlinear behavior. The mechanical properties of a shotcrete-steel composite also depend on the type of steel support. This study presents a fiber section element model considering the effect of axial force to evaluate the nonlinear behavior of a shotcrete-steel composite. Additionally, the model was used to analyze the effects of different types of steel supports on the load capacity. Furthermore, a modified hyperbolic model for ground reaction, including strain-softening, is proposed to account for the ground-lining interaction. The model was validated by comparing the numerical results with results from previous load test performed on arched shotcrete specimens. The changes in mechanical responses of the lining were also investigated. Results show a lining with doubly reinforcement rebar has similar load capacity as a lining with H-shaped supports. The use of more materials for the steel support enhances the residual resistance. For all types of steel reinforcement, the contribution of steel supports during peak load decreases as the ground becomes stiffer.

STRESS ANALYSIS OF MAXILLARY PREMOLARS WITH COMPOSITE RESIN RESTORATION OF NOTCH-SHAPED CLASSⅤCAVITY AND ACCESS CAVITY ; THREE-DIMENSIONAL FINITE ELEMENT STUDY (쐐기형 5급 와동과 근관와동을 복합레진으로 수복한 상악 소구치에 대한 응력 분석: 3차원 유한요소법적 연구)

  • Lee, Seon-Hwa;Kim, Hyeon-Cheol;Hur, Bock;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.6
    • /
    • pp.570-579
    • /
    • 2008
  • The purpose of this study was to investigate the distribution of tensile stress of canal obturated maxillary second premolar with access cavity and notch-shaped class V cavity restored with composite resin using a 3D finite element analysis. The tested groups were classified as 8 situations by only access cavity or access cavity with notch-shaped class V cavity (S or N), loading condition (L1 or L2), and with or without glass ionomer cement base (R1 or R2). A static load of 500 N was applied at buccal and palatal cusps. Notch-shaped cavity and access cavity were filled microhybrid composite resin (Z100) with or without GIC base (Fuji II LC). The tensile stresses presented in the buccal cervical area, palatal cervical area and occlusal surface were analyzed using ANSYS. Tensile stress distributions were similar regardless of base. When the load was applied on the buccal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth with class Ⅴ cavity were slightly higher than that of the tooth without class V cavity. When the load was applied the palatal cusp, excessive high tensile stress was concentrated around the loading point and along the central groove of occlusal surface. The tensile stress values of the tooth without class V cavity were slightly higher than that of the tooth with class V cavity.

Active and Passive Suppression of Composite Panel Flutter Using Piezoceramics with Shunt Circuits (션트회로에 연결된 압전세라믹을 이용한 복합재료 패널 플리터의 능동 및 수동 제어)

  • 문성환;김승조
    • Composites Research
    • /
    • v.13 no.5
    • /
    • pp.50-59
    • /
    • 2000
  • In this paper, two methods to suppress flutter of the composite panel are examined. First, in the active control method, a controller based on the linear optimal control theory is designed and control input voltage is applied on the actuators and a PZT is used as actuator. Second, a new technique, passive suppression scheme, is suggested for suppression of the nonlinear panel flutter. In the passive suppression scheme, a shunt circuit which consists of inductor-resistor is used to increase damping of the system and as a result the flutter can be attenuated. A passive damping technology, which is believed to be more robust suppression system in practical operation, requires very little or no electrical power and additional apparatuses such as sensor system and controller are not needed. To achieve the great actuating force/damping effect, the optimal shape and location of the actuators are determined by using genetic algorithms. The governing equations are derived by using extended Hamilton's principle. They are based on the nonlinear von Karman strain-displacement relationship for the panel structure and quasi-steady first-order piston theory for the supersonic airflow. The discretized finite element equations are obtained by using 4-node conforming plate element. A modal reduction is performed to the finite element equations in order to suppress the panel flutter effectively and nonlinear-coupled modal equations are obtained. Numerical suppression results, which are based on the reduced nonlinear modal equations, are presented in time domain by using Newmark nonlinear time integration method.

  • PDF