• Title/Summary/Keyword: composite element

Search Result 3,065, Processing Time 0.025 seconds

Ultimate strength behavior of steel-concrete-steel sandwich beams with ultra-lightweight cement composite, Part 2: Finite element analysis

  • Yan, Jia-Bao;Liew, J.Y. Richard;Zhang, Min-Hong
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1001-1021
    • /
    • 2015
  • Ultra-lightweight cement composite (ULCC) with a compressive strength of 60 MPa and density of $1,450kg/m^3$ has been developed and used in the steel-concrete-steel (SCS) sandwich structures. This paper investigates the structural performances of SCS sandwich composite beams with ULCC as filled material. Overlapped headed shear studs were used to provide shear and tensile bond between the face plate and the lightweight core. Three-dimensional nonlinear finite element (FE) model was developed for the ultimate strength analysis of such SCS sandwich composite beams. The accuracy of the FE analysis was established by comparing the predicted results with the quasi-static tests on the SCS sandwich beams. The FE model was also applied to the nonlinear analysis on curved SCS sandwich beam and shells and the SCS sandwich beams with J-hook connectors and different concrete core including ULCC, lightweight concrete (LWC) and normal weight concrete (NWC). Validations were also carried out to check the accuracy of the FE analysis on the SCS sandwich beams with J-hook connectors and curved SCS sandwich structure. Finally, recommended FE analysis procedures were given.

The Development of Expert System for Strength Evaluation of TiNi Fiber Reinforced Al Matrix Composite (TiNi/Al기 형상기억복합재료의 강도평가를 위한 전문가시스템의 개발)

  • Park, Young-Chul;Lee, Dong-Hwa;Park, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1099-1108
    • /
    • 2004
  • In this paper, a study on the development of expert system for Al matrix composite with shape memory alloy fiber is performed to evaluate termomechanical behavior and mechanical properties. Expert system is very useful computer-based analysis system designed to make analysis technique and knowledge conveniently available to a lot of fabricable condition. In the developed system, it is possible to predict termomechanical behavior and mechanical properties for other composite with shape memory alloy fiber. The smartness of the shape memory alloy is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. For finite element analysis, an analytical model is assumed two dimensional axisymmetric model compared of one fiber and the matrix. To evaluate the strength of composite using FEM, the concept of smart composite was simulated on computer Thus, in this paper, the FEA was carried out at two critical temperature conditions; room temperature and high temperature(363k). The finite element analysis result was compared with the test result for the analysis validity.

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.635-659
    • /
    • 2015
  • In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.

Structural behavior of slender circular steel-concrete composite columns under various means of load application

  • Johansson, Mathias;Gylltoft, Kent
    • Steel and Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.393-410
    • /
    • 2001
  • In an experimental and analytical study on the structural behavior of slender circular steel-concrete composite columns, eleven specimens were tested to investigate the effects of three ways to apply a load to a column. The load was applied eccentrically to the concrete section, to the steel section or to the entire section. Three-dimensional nonlinear finite element models were established and verified with the experimental results. The analytical models were also used to study how the behavior of the column was influenced by the bond strength between the steel tube and the concrete core and the by confinement of the concrete core offered by the steel tube. The results obtained from the tests and the finite element analyses showed that the behavior of the column was greatly influenced by the method used to apply a load to the column section. When relying on just the natural bond, full composite action was achieved only when the load was applied to the entire section of the column. Furthermore, because of the slenderness effects the columns did not exhibit the beneficial effects of composite behavior in terms of increased concrete strength due to the confinement.

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.

Finite Element Analysis of Carbon Fiber Composite Sandwich Panels Subjected to Wind Debris Impacts

  • Zhang, Bi;Shanker, Ajay
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.436-442
    • /
    • 2022
  • Hurricanes and tornadoes are the most destructive natural disasters in some central and southern states. Thus, storm shelters, which can provide emergency protections for low-rise building residents, are becoming popular nowadays. Both FEMA and ICC have published a series of manuals on storm shelter design. However, the authors found that the materials for related products in the market are heavyweight and hard to deliver and install; renovations are necessary. The authors' previous studies found that lightweight and high-performance composite materials can withstand extreme wind pressure, but some building codes are designated in wind-borne debris areas. In these areas, wind debris can reach greater than 100 mph speed. In addition, the impact damage on the composite materials is an increasing safety issue in many engineering fields; some can cause catastrophic results. Therefore, studying composite structures subjected to wind debris impact is essential. The finite element models are set up using the software Abaqus 2.0 to conduct the simulations to observe the impact resistance behavior of the carbon fiber composite sandwich panels. The selected wood debris models meet the FEMA requirements. The outcome of this study is then employed in future lab tests and compared with other material models.

  • PDF

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Murugesan, Nagaraj;Rajamohan, Vasudevan
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.583-601
    • /
    • 2015
  • In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

The Effects of Composite Laminate Layups on Nonlinear Buckling Behavior Using a Degenerated Shell Element (퇴화 쉘 요소를 사용한 적층복합재의 증분형 비선형 좌굴 현상 및 적층 레이업 효과)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.50-60
    • /
    • 2016
  • Laminate composites have a number of excellent characteristics in aspects of strength, stiffness, bending, and buckling. Buckling and postbuckling analysis of laminate composites with layups of [90/0]2s, $[{\pm}45/90/0]s$, $[{\pm}45]2s$ has been carried using the Total Lagrangian nonlinear Newton-Raphson method. The formulation of a geometrically nonlinear composite shell element based on a nonlinear large deformation method is presented. The used element is an eight-node degenerated shell element with six degrees of freedom. Square, circular cylinder, and arch panel laminate geometries were analyzed to verify the effects of the layups on the buckling and postbuckling behavior. The results showed that the effects of laminate layups on bucking and postbuckling behavior and the present formulation showed very good agreement with existing references.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Flexural behaviour of fibre reinforced geopolymer concrete composite beams

  • Vijai, K.;Kumutha, R.;Vishnuram, B.G.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.437-459
    • /
    • 2015
  • An experimental investigation on the behaviour of geopolymer composite concrete beams reinforced with conventional steel bars and various types of fibres namely steel, polypropylene and glass in different volume fractions under flexural loading is presented in this paper. The cross sectional dimensions and the span of the beams were same for all the beams. The first crack load, ultimate load and the loaddeflection response at various stages of loading were evaluated experimentally. The details of the finite element analysis using "ANSYS 10.0" program to predict the load-deflection behavior of geopolymer composite reinforced concrete beams on significant stages of loading are also presented. Nonlinear finite element analysis has been performed and a comparison between the results obtained from finite element analysis (FEA) and experiments were made. Analytical results obtained using ANSYS were also compared with the calculations based on theory and presented.