DOI QR코드

DOI QR Code

Investigation on interlaminar shear stresses in laminated composite beam under thermal and mechanical loading

  • Received : 2014.02.17
  • Accepted : 2014.08.22
  • Published : 2015.03.25

Abstract

In the present study, the combined effects of thermal and mechanical loadings on the interlaminar shear stresses of both moderately thin and thick composite laminated beams are numerically analyzed. The finite element modelling of laminated composite beams and analysis of interlaminar stresses are performed using the commercially available software package MSC NASTRAN/PATRAN. The validity of the finite element analysis (FEA) is demonstrated by comparing the experimental test results obtained due to mechanical loadings under the influence of thermal environment with those derived using the present FEA. Various parametric studies are also performed to investigate the effect of thermal loading on interlaminar stresses generated in symmetric, anti-symmetric, asymmetric, unidirectional, cross-ply, and balanced composite laminated beams of different stacking sequences with identical mechanical loadings and various boundary conditions. It is shown that the elevated thermal environment lead to higher interlaminar shear stresses varying with the stacking sequence, length to thickness ratio, ply orientations under identical mechanical loading and boundary conditions of the composite laminated beams. It is realized that the magnitude of the interlaminar stresses along xz plane is always much higher than those of along yz plane irrespective of the ply-orientation, length to thickness ratios and boundary conditions of the composite laminated beams. It is also observed that the effect of thermal environment on the interlaminar shear stresses in carbon-epoxy fiber reinforced composite laminated beams are increasing in the order of symmetric cross-ply laminate, unidirectional laminate, asymmetric cross-ply laminate and anti-symmetric laminate. The interlaminar shear stresses are higher in thinner composite laminated beams compared to that in thicker composite laminated beams under all environmental temperatures irrespective of the laminate stacking sequence, ply-orientation and boundary conditions.

Keywords

References

  1. Aydogdu, M. (2007), "Thermal buckling analysis of cross-ply laminated composite beams with general boundary conditions", Compos. Sci. Technol., 67(6), 1096-1104. https://doi.org/10.1016/j.compscitech.2006.05.021
  2. Becker, W., Jin, P.P. and Lindemann, J. (2001), "The free-corner effect in thermally loaded laminates", Compos. Struct., 52(1), 97-102. https://doi.org/10.1016/S0263-8223(00)00191-4
  3. Bhaskar, K. and Kaushik, B. (2004), "Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges", Compos. Struct., 63(1), 63-68. https://doi.org/10.1016/S0263-8223(03)00132-6
  4. Cho, M. and Kim, H.S. (2000), "Iterative free-edge stress analysis of composite laminates under extension, bending, twisting and thermal loadings", Int. J. Solid. Struct., 37(3), 435-459. https://doi.org/10.1016/S0020-7683(99)00014-1
  5. Cho, M. and Oh, J. (2003), "Higher order zig-zag plate theory under thermo-electric-mechanical loads combined", Compos.: Part B, 34(1), 67-82.
  6. Cho, M. and Oh, J. (2004), "Higher order zig-zag theory for fully coupled thermo-electric-mechanical smart composite plates", Int. J. Solid. Struct., 41(5-6), 1331-1356. https://doi.org/10.1016/j.ijsolstr.2003.10.020
  7. Gatto, A., Mattioni, F. and Friswell, M.I. (2009), "Experimental investigation of bistable winglets to enhance wing lift takeoff capability", J. Aircraft, 46(2), 647-655. https://doi.org/10.2514/1.39614
  8. Gayen, D. and Roy, T. (2013), "Hygro-Thermal Effects on Stress Analysis of Tapered Laminated Composite Beam", Int. J. Compos. Mater., 3(3), 46-55.
  9. Hu, E.Z., Soutis, C. and Edge, E.C. (1997), "Interlaminar stresses in composite laminates with Interlaminar stresses in composite a circular hole," Compos. Struct., 37(2), 223-232. https://doi.org/10.1016/S0263-8223(97)80014-1
  10. Kassapoglou, C. (1990), "Determination of Interlaminar Stresses in Composite Laminates under Combined Loads", J. Reinf. Plast. Compos., 9(1), 33-58. https://doi.org/10.1177/073168449000900103
  11. Kress, G., Roos, R., Barbezat, M., Dransfeld, C. and Ermann, P. (2005), "Model for interlaminar normal stress in singly curved laminates", Compos. Struct., 69(4), 458-469. https://doi.org/10.1016/j.compstruct.2004.08.026
  12. Lee, Y.W. (1994), "Interlaminar stress analysis of composite laminates using a sublaminate/layer model" Int. J. Solid. Struct., 31(11), 1549-1564. https://doi.org/10.1016/0020-7683(94)90014-0
  13. Lee, C.Y. and Liu, D. (1992), "An interlaminar stress continuity theory for laminated composite analysis", Comput. Struct., 42(1), 69-78. https://doi.org/10.1016/0045-7949(92)90537-A
  14. Matsunaga, H. (2002), "Interlaminar stress analysis of laminated composite beams according to global higher-order deformation theories", Compos. Struct., 55(1), 105-114. https://doi.org/10.1016/S0263-8223(01)00134-9
  15. Matsunaga, H. (2003), "Interlaminar stress analysis of laminated composite and sandwich circular arches subjected to thermal/mechanical loading", Compos. Struct., 60(3), 345-358. https://doi.org/10.1016/S0263-8223(02)00340-9
  16. Matsunaga, H. (2004), "A comparison between 2-D single-layer and 3-D layerwise theories for computing interlaminar stresses of laminated composite and sandwich plates subjected to thermal loadings", Compos. Struct., 64(2), 161-177. https://doi.org/10.1016/j.compstruct.2003.08.001
  17. Murthy, M.V.V.S., Mahapatra, D.R., Badarinarayana, K. and Gopalakrishnan, S. (2005), "A refined higher order finite element for asymmetric composite beams", Compos. Struct., 67(1), 27-35. https://doi.org/10.1016/j.compstruct.2004.01.005
  18. Oh, J. and Cho, M. (2004), "A finite element based on cubic zig-zag plate theory for the prediction of thermo-electric-mechanical behaviours", Int. J. Solid. Struct., 41(5-6), 1357-1375. https://doi.org/10.1016/j.ijsolstr.2003.10.019
  19. Pagano, N.J. (1969), "Exact solutions for composite laminates in cylindrical bending", J. Compos. Mater., 3(3), 398-411. https://doi.org/10.1177/002199836900300304
  20. Plagianakos, T.S. and Saravanos, D.A. (2009), "Higher-order layerwise laminate theory for the prediction of interlaminar shear stresses in thick composite and sandwich composite plates", Compos. Struct., 87(1), 23-35. https://doi.org/10.1016/j.compstruct.2007.12.002
  21. Rand, O. (1998), "Interlaminar shear stresses in solid composite beams using a complete out-of-plane shear deformation model", Compos. Struct., 66(6), 713-723. https://doi.org/10.1016/S0045-7949(97)00127-2
  22. Rolfes, R. and Rohwer, K. (2000), "Integrated thermal and mechanical analysis of composite plates and shells", Compos. Sci. Technol., 60(11), 2097-2106. https://doi.org/10.1016/S0266-3538(00)00117-2
  23. Salamon, N.J. (1978), "Interlaminar stresses in a layered composite Laminate in bending", Fibre Sci. Technol., 11(4), 305-317. https://doi.org/10.1016/0015-0568(78)90020-9
  24. Shariyat, M. (2010), "A generalized high-order global-local plate theory for nonlinear bending and buckling analyses of imperfect sandwich plates subjected to thermo-mechanical loads", Compos. Struct., 92(1), 130-143. https://doi.org/10.1016/j.compstruct.2009.07.007
  25. Tahani, M. (2007), "Analysis of laminated composite beams using layerwise displacement theories", Compos. Struct., 79(4), 535-547. https://doi.org/10.1016/j.compstruct.2006.02.019
  26. Tong, J.W., Xie, M.Y. and Shen, M. (2004), "The interlaminar stresses of symmetric composite laminates", J. Reinf. Plast. Compos., 23(10), 1023-1029. https://doi.org/10.1177/0731684404029352
  27. Vidal, P. and Polit, O. (2008), "A family of sinus finite elements for the analysis of rectangular laminated beams", Compos. Struct., 84(1), 56-72. https://doi.org/10.1016/j.compstruct.2007.06.009
  28. Vidal, P. and Polit, O. (2009), "A refined sine-based finite element with transverse normal deformation for the analysis of laminated beams under thermo mechanical loads", J. Mech. Mater. Struct., 4(6), 1127-1155. https://doi.org/10.2140/jomms.2009.4.1127
  29. Wu, C.P. and Kuo, H.C. (1993), "An interlaminar stress mixed finite element method for the analysis of thick laminated composite plates", Compos. Struct., 24(1), 29-42. https://doi.org/10.1016/0263-8223(93)90052-R
  30. Wu, H. and Yan, X. (2005), "Interlaminar stress modeling of composite laminates with finite element method", J. Reinf. Plast. Compos., 24(3), 130-143.

Cited by

  1. A Galerkin Layerwise Formulation for three-dimensional stress analysis in long sandwich plates vol.24, pp.5, 2015, https://doi.org/10.12989/scs.2017.24.5.523