• Title/Summary/Keyword: orthotropic materials

Search Result 217, Processing Time 0.027 seconds

An Analysis of Stress Intensity Factors of Composite Materials by Boundary Element Method (BEM) (경계요소법(BEM)에 의한 복합재료의 응력확대계수 해석)

  • 이갑래;조상봉;최용식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.179-189
    • /
    • 1991
  • Composite materials are generally treated as anisotropic or an orthotropic materials. Unlike isotropic materials, the orthotropic materials can divided three groups depending upon the relationship of the four material constants or depending upon the characteristic roots of orthotropic materials. In particular, the fundamental solutions of two dimensional BEM for composite materials (orthotropic or anisotropic material) generally have a singularity in the conventional method when the characteristic roots are equal. In consideration of this singularity in the conventional method when the characteristic roots are equal. In consideration of this singular problems, in this paper, the fundamental solutions of BEM are systematically analysed for orthotropic materials. And the stress and displacement fields for a crack in an orthotropic materials are singular when the characteristic roots of orthotropic materials are equal. Therefore, these fields for a crack in an orthotropic materials are analysed by the analogous method to isotropic materials when the characteristic roots are equal.

Assessing interfacial fracture in orthotropic materials: Implementing the RIS concept with considering the T-stress term under mixed-mode I/II

  • Zahra Khaji;Mahdi Fakoor
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.237-247
    • /
    • 2024
  • Research on interfacial crack formation in orthotropic bi-materials has experienced a notable increase in recent years, driven by growing concerns about structural integrity and reliability. The existence of a crack at the interface of bi-materials has a substantial impact on mechanical strength and can ultimately lead to fracture. The primary objective of this article is to introduce a comprehensive analytical model and establish stress relationships for investigating interfacial crack between two non-identical orthotropic materials with desired crack-fiber angles. In this paper, we present the application of the Interfacial Maximum Tangential Stress (IMTS) criterion, in combination with the Reinforcement Isotropic Solid (RIS) model, to investigate the behavior of interfacial cracks in orthotropic bi-materials under mixed-mode I/II loading conditions. We analytically characterize the stress state at the interfacial crack tip using both Stress Intensity Factors (SIFs) and the T-stress term. Orthotropic materials, due to their anisotropic nature, can exhibit complex crack tip stress fields, making it challenging to predict crack initiation behavior. The secondary objective of this study is to employ the IMTS criterion to predict the crack initiation angle and explore the notable impact of the T-stress term on fracture behavior. Furthermore, we validate the effectiveness of our approach in evaluating Fracture Limit Curves (FLCs) for interfacial cracks in orthotropic bi-materials by comparing our FLCs with relevant experimental data from existing literature.

Equivalent reinforcement isotropic model for fracture investigation of orthotropic materials

  • Fakoor, Mahdi;Rafiee, Roham;Zare, Shahab
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • In this research, an efficient mixed mode I/II fracture criterion is developed for fracture investigation of orthotropic materials wherein crack is placed along the fibers. This criterion is developed based on extension of well-known Maximum Tensile Stress (MTS) criterion in conjunction with a novel material model titled as Equivalent Reinforced Isotropic Model (ERIM). In this model, orthotropic material is replaced with an isotropic matrix reinforced with fibers. A comparison between available experimental observations and theoretical estimation implies on capability of developed criterion for predicting both crack propagation direction and fracture instance, wherein the achieved fracture limit curves are also compatible with fracture mechanism of orthotic materials. It is also shown that unlike isotropic materials, fracture toughness of orthotic materials in mode $I(K)_{IC}{\mid})$ cannot be introduced as the maximum load bearing capacity and thus new fracture mechanics property, named here as maximum orthotropic fracture toughness in mode $I(K_{IC}{\mid}^{ortho}_{max})$ is defined. Optimum angle between crack and fiber direction for maximum load bearing in orthotropic materials is also defined.

A study of fundamental solution of BEM for orthotropic materials (직교이방성 재료에 대한 경계요소법(BEM)의 기본해에 관한 연구)

  • 이갑래;조상봉;최용식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.51-58
    • /
    • 1990
  • According to the developments of various composite materials, it seems to be very important to evaluate the strength and fracture behavior of composite materials. When the composite material is considered as orthotropic material, the characteristic equation of orthotropic material have complex roots. If characteristic roots are equal, the fundamental solutions of BEM become singular ones. This paper analyse the fundamental solutions of the singular problem of orthotropic material using the analogous method to isotropic material.

  • PDF

Elastic Buckling Analysis of a Simply Supported Orthotropic Plate with Exponentialy Variable Thickness (두께가 변하는 직교이방성판의 탄성좌굴해석)

  • 장성열;정상균;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.25-28
    • /
    • 2001
  • The problem considered is the buckling of a rectangular orthotropic plate, tapered in thickness in a direction parallel to two sides and compressed in that direction. Curves are presented showing the variation of buckling stress coefficient with the special loads. The type of thickness variation is exponential. While this paper is presented how to design for an efficient orthotropic plate taper from physical consideration.

  • PDF

The effect of non-homogeneity on the stability of laminated orthotropic conical shells subjected to hydrostatic pressure

  • Zerin, Zihni
    • Structural Engineering and Mechanics
    • /
    • v.43 no.1
    • /
    • pp.89-103
    • /
    • 2012
  • In this study, the stability of laminated homogeneous and non-homogeneous orthotropic truncated conical shells with freely supported edges under a uniform hydrostatic pressure is investigated. It is assumed that the composite material is orthotropic and the material properties depend only on the thickness coordinate. The basic relations, the modified Donnell type stability and compatibility equations have been obtained for laminated non-homogeneous orthotropic truncated conical shells. Applying Galerkin method to the foregoing equations, the expression for the critical hydrostatic pressure is obtained. The appropriate formulas for the single-layer and laminated, cylindrical and complete conical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, effects of non-homogeneity, number and ordering of layers and variations of shell characteristics on the critical hydrostatic pressure are investigated.

Mixed mode I/II fracture criterion to anticipate behavior of the orthotropic materials

  • Farid, Hannaneh Manafi;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.671-679
    • /
    • 2020
  • The new energy-based criterion, named Reinforcement Strain Energy Density (ReiSED), is proposed to investigate the fracture behavior of the cracked orthotropic materials in which the crack is embedded in the matrix along the fibers. ReiSED is an extension of the well-known minimum strain energy density criterion. The concept of the reinforced isotropic solid as an advantageous model is the basis of the proposed mixed-mode I/II criterion. This model introduces fibers as reinforcements of the isotropic matrix in orthotropic materials. The effects of fibers are qualified by defining reinforcement coefficients at tension and shear modes. These coefficients, called Reduced Stress (ReSt), provide the possibility of encompassing the fiber fraction in a fracture criterion for the first time. Comparing ReiSED fracture limit curve with experimental data proves the high efficiency of this criterion to predict the fracture behavior of orthotropic materials.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.

Buckling of Fixedly Supported Orthotropic Plate under In-plane Linearly Distributed Forces (면내 선형분포하중을 받는 고정지지된 직교이방성판의 좌굴)

  • 정재호;채수하;남정훈;윤순종
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.5-8
    • /
    • 2000
  • This paper presents the results of an elastic buckling analysis of orthotropic plate under in-plane linearly distributed forces. The analytical solution for the orthotropic plate whose boundaries were assumed to be simply supported was derived in the previous work. In this study the loaded edges of plate are assumed to be simply supported and other two edges are assumed to be fixed. For the buckling analysis Rayleigh-Ritz method is employed. Graphical form of results for finding the elastic buckling strength of orthotropic plate under in-plane linearly distributed forces is presented.

  • PDF

Stress and Displacement Fields of a Propagating Mode III Crack in Orthotropic Functionally Gradient Materials with Property Gradation Along Y Direction (Y방향을 따라 물성치구배를 갖는 직교이방성 함수구배 재료에서 전파하는 모드 III 균열의 응력장과 변위장)

  • Lee, Kwang-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Stress and displacement fields of a Mode III crack propagating along the normal to gradient in an orthotropic functionally gradient materials (OFGM), which has (1) an exponential variation of shear modulus and density, and (2) linear variation of shear modulus with a constant density, are derived. The equations of motion in OFGM are developed and solution to the displacement and stress fields for a propagating crack at constant speed though an asymptotic analysis. The first three terms in expansion of stress and displacement are derived to explicitly bring out the influence of nonhomogeneity. When the FGM constant ${\zeta}$ is zero or $r{\rightarrow}0$, the fields for OFGM are almost same as the those for homogeneous orthotropic material. Using the stress components, the effects of nonhomogeneity on stress components are discussed.

  • PDF