• Title/Summary/Keyword: composite case

Search Result 1,599, Processing Time 0.025 seconds

Effects of Fiber Orientations and Hybrid Ratios on Lubricant Tribological Characteristics of $Al_2O_{3f}/SiC_p$ Reinforced MMCs ($Al_2O_{3f}/SiC_p$ 금속복합재료의 섬유방향과 혼합비가 윤활마모특성에 미치는 영향)

  • Wang, Yi-Qi;Song, Jung-Il
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.15-23
    • /
    • 2009
  • The lubricant tribological characteristics of $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) fabricated by squeeze casting method was investigated using a pin-on-disk wear tester. The wear tests of the MMCs were performed according to fiber/particle hybrid ratio in the planar-random (PR) and normal (N) orientations sliding against a counter steel disk at a fixed speed and $25\;kg_f$ loading under different sliding distances and temperatures. The test results showed that the wear behavior of MMCs varied with fiber orientation and hybrid ratio. At room temperature, the lubricant wear behavior of F20P0 unhybrid PR-MMCs was superior to that of N-MMCs while the hybrid composites exhibited the reverse lubricant wear behavior. It was also revealed that the wear resistance of PR-MMCs was superior to that of the N-MMCs due to the joint action of reinforcements and lubricant film between the friction surfaces at an elevated temperature of $100^{\circ}C$ for both fiber only and hybrid cases. In case of $150^{\circ}C$, although the trend of weight loss was similar to that of others, the wear resistance of PR-MMCs was better than that of N-MMCs for hybrid MMCs.

Interfacial and Durability Evaluation of Jute and Hemp Fiber/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (미세역학적시험법과 음향방출을 이용한 Jute 및 Hemp 섬유/폴리프로필렌 복합재료의 내구성 및 계면 평가)

  • Kim, Pyung-Gee;Jang, Jung-Hoon;Kim, Sung-Ju;Hwang, Byung-Sun;Park, Joung-Man
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.55-62
    • /
    • 2007
  • Interfacial evaluation and durability of Jute and Hemp fibers/polypropylene (PP) composites were investigated. Moisture content of various treated conditions were measured by thermogravimetic analyzer (TGA). After boiling water test, mechanical properties and IFSS between Jute, Hemp fibers and PP matrix decreased. On the other hand, work of adhesion increased due to swelled fibril by water. Surface energies of Jute and Hemp fibers before and after boiling water test were obtained using dynamic contact angle measurement. IFSS was not always consistent with thermodynamic work of adhesion. In boiling water case, since Jute and Hemp fibers could be swelled by water, surface area and moisture infiltration space increased. Environmental effect on microfailure modes of Jute or Hemp fibers and Jute or Hemp fibers/PP composites were obtained by observing via optical microscope and by monitoring acoustic emission (AE) events and their AE parameters. After boiling water test, unlike Hemp fiber, microfailure process of Jute fiber could occur due to low tensile strength by swelled fibril. In addition, AE events occurred more and AE amplitude and energy became lower than those of before boiling water test.

A Preliminary Study on the Ethnic Identities of the Karen People in Myanmar (미얀마 카렌족(Karen)의 종족정체성에 관한 시론적 연구)

  • KIM, In Ah
    • SUVANNABHUMI
    • /
    • v.2 no.2
    • /
    • pp.29-51
    • /
    • 2010
  • The diversity of Southeast Asia can be also represented at the tremendous number of ethnic groups residing throughout its various regions even beyond national boundaries. What does it mean by the composite of numerous peoples? It has triggered a lot of problems in a nation or overall Southeast Asia. Among them, the most serious one seems to be ethnic conflicts having damaged national integration and caused political, economical, and social instability. In that respect, Karen people have been a minority group situated in the most chronic dispute in Myanmar. Since 1947 some of the Karen equipped with armed forces have been fighting against the military government currently ruling Myanmar. As the result, the refugees over 200,000 population had moved to the mountain camps located at neighboring Thailand, attracting a lot of attention throughout international societies. According to 1931 census by British colonial government, the Karen have the greatest numbers in population as minority and include 16 subgroups including Karenni(Kayah) and Pa-O seemingly excluded from its category in contemporary point of view. It means that Karen people should not be regarded as an ethnic group, and in fact do not show a homogeneous identity under the title of Karen. Given the situation, we need to reconsider the category of Karen. What does the Karen mean in a real sense? Previous studies on the Karen had been performed mainly by anthropologists or missionaries such as Marshall(1922), Hamilton (1976), Hanson Tadaw(1959), Smeaton(1920), Keyes(1979), Hayami (1992; 2004), etc. Most of them examined the Karen as a group and ignored the possibilities of representing the divergent identities vis-à-vis their subgroups. Therefore, they have focused on the myth to convert Karen people to Christianity, although the Christian Karens are less than 20% of total population. As a result, I argue that they would fail to define the real meaning of Karen. It has been caused us to recognize the Karen as a meaningless total entity to be accepted by all means. According to their arguments, the difference among Karen's subgroups is just dealt with the trivial matters that do not affect the ethnic boundary itself, still maintaining the ethnic identity as Karen. As we shall see on this thesis, this is never the case. My thesis aims at uncovering and scrutinizing the real meaning of the category of Karen. For the purpose of it, I will consider Karen people as a linguistic group from the beginning as shown in 1931 census. I argue that the Karen have been affected or exposed by various conditions or environments throughout the harsh history having happened on the areas of current Myanmar and Thailand, leading the vicissitudes of their ethnic identities.

  • PDF

Effect of Nano-sized Calcium-silicate-hydrate (C-S-H) Crystals on Cement Hydration (나노 크기 칼슘-실리케이트-하이드레이트(C-S-H) 결정이 시멘트 수화에 미치는 영향 분석)

  • Gyeong-Tae Kim;Su-Ji Woo;Sung-Won Yoo;Young-Cheol Choi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.153-160
    • /
    • 2023
  • In this study, nano-sized C-S-H crystals were synthesized using the liquid phase reaction method and their properties were investigated. The synthesized C-S-H crystals were added to the cement composite in suspension form to determine their effect on the hydration properties of the cement. The amount of chemical admixture was varied to obtain nano-sized C-S-H crystals with optimal agglomerated morphology, and SEM photographs were analyzed. A cleaning process was added to remove harmful substances other than the synthesiz ed C-S-H crystals. It was found that the concentration of harmful substances was reduced in the case of C-S-H crystals subjected to the cleaning process. The synthesized C-S-H suspensions were prepared with and without the cleaning process, and cement composites were prepared with the cement weight content as the main variable. The effect of C-S-H crystals on the initial hydration properties of the cement was confirmed by microhydration heat analysis. In addition, mortar specimens were prepared to measure the compressive strength over time. The test results showed that the nano-sized C-S-H crystals act as nucleation sites in the cement paste to promote the early hydration of the cement and increase the early compressive strength.

Evaluation of Proper Level of the Longitudinal Prestress for the Precast Deck of Railway Bridges Considering the Temperature Change (철도교용 프리케스트 바닥판의 온도변화를 고려한 적정한 종방향 프리스트레스 수준의 산정)

  • Jeon, Se Jin;Kim, Young Jin;Kim, Seong Woon;Kim, Cheol Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.499-509
    • /
    • 2006
  • Precast concrete deck has many advantages comparing with the in-situ concrete deck, and has been successfully applied to replacement of the deteriorated decks and to the newly constructed highway bridges in domestic region. In order to apply the precast decks into the railway bridges, however, differences of the load characteristics between the highway and the railway should be properly taken into account including the train load, longitudinal force of the continuous welded rail, acceleration or braking force, temperature change and shrinkage. Proper level of the longitudinal prestress of the tendons that can ensure integrity of the transverse joints in the deck system is of a primary importance. To this aim, the longitudinal tensile stresses induced by the design loads are derived using three-dimensional finite element analyses for the frequently adopted PSC composite girder railway bridge. The effect of the temperature change is also investigated considering the design codes and theoretical equations in an in-depth manner. The estimated proper prestress level to counteract those tensile stresses is above 2.4 MPa, which is similar to the case of the highway bridges.

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

A Strategy of a Gap Block Design in the CFRP Double Roller to Minimize Defects during the Product Conveyance (제품 이송 시 결함 최소화를 위한 CFRP 이중 롤러의 Gap block 설계 전략)

  • Seung-Ji Yang;Young-june Park;Sung-Eun Kim;Jun-Geol Ahn;Hyun-Ik Yang
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.7-14
    • /
    • 2024
  • Due to the structural characteristic of a double roller, the double roller can have various deformation behaviors depending on a gap block design, even if dimensions and loading conditions for the double roller are the same. Based on this feature, we propose a strategy for designing the gap block of the carbon-fiber reinforced plastic (CFRP) double roller to minimize defects (e.g., sagging and wrinkling), which can be raised during the product conveying process, with the pursue of the lightweight design. In the suggested strategy, analysis cases are first selected by considering main design parameters and engineering tolerances of the gap block, and then deformation behaviors of these selected cases are extracted using the finite element method (FEM). Here, to obtain the optimal gap block parameters that satisfy the purpose of this study, deformation deviations in the contact area are calculated and compared using the extracted deformation behaviors. Note that the contact area in this work is located between the product and the roller. As a result, through the design method of the gap block proposed in this work, it is possible to construct the CFRP double roller that can significantly decrease the defects without changing the overall sizes of the roller. A detailed method is suggested herein, and the results are evaluated in a numerical way.

Experimental Study on the Adhesion and Performance Evaluation of Joints for Modified Polyethylene Coated Steel Pipes (개질 폴리에틸렌 코팅 강관의 부착 및 체결부 성능 평가 연구)

  • Myung Kue Lee;Sanghwan Cho;Min Ook Kim
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.238-245
    • /
    • 2024
  • In this study, as part of the development of a monitoring system for the efficient maintenance of steel pipes, an experimental study was conducted to evaluate the performance of steel pipes treated with modified polyethylene coating. In the case of the conventional mechanical pre-coating method, there was a deterioration in polyethylene adhesion during expansion testing, which led to the application of a chemical pre-treatment process using a calcium-mixed phosphate zinc film to resolve this issue. SEM and EDX analyses showed that the densest structure was observed at a Zn/Ca ratio of 1.0, and improved heat resistance compared to the conventional method was confirmed. Additionally, to prevent coating detachment during expansion, an evaluation of adhesion and elongation was conducted on steel pipes with modified polyethylene coating, incorporating materials such as elastomers based on maleic anhydride grafting, metal oxides, blocking agents, and slip agents. Experimental results showed that the specimen (S4) containing all modified materials exhibited more than a 25% performance improvement compared to the specimen (S2) containing only metal oxides. Lastly, the development and performance evaluation of wedge-shaped socketing and pressing wheels, which are part of the pipe fixing accessories, were conducted to prevent surface coating damage on the completed pipes.

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators (3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상)

  • Beom-Hui Lee;Dong-Wan Ham;Ssendagire Kennedy;Jeong-Tae Kim;Sun-Yul Ryou
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.3
    • /
    • pp.88-96
    • /
    • 2024
  • Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.