DOI QR코드

DOI QR Code

Improving the Cycle Performance of Li Metal Secondary Batteries Using Three-Dimensional Porous Ag/VGCF-Coated Separators

3D 다공성 구조의 Ag-VGCF 코팅 분리막을 이용한 리튬금속 이차전지 수명향상

  • Beom-Hui Lee (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Dong-Wan Ham (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Ssendagire Kennedy (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Jeong-Tae Kim (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Sun-Yul Ryou (Department of Chemical and Biological Engineering, Hanbat National University)
  • 이범희 (국립한밭대학교 화학생명공학과) ;
  • 함동완 (국립한밭대학교 화학생명공학과) ;
  • ;
  • 김정태 (국립한밭대학교 화학생명공학과) ;
  • 유선율 (국립한밭대학교 화학생명공학과)
  • Received : 2024.04.25
  • Accepted : 2024.07.25
  • Published : 2024.08.31

Abstract

Lithium metal has garnered attention as a promising anode active material thanks to its high specific capacity, energy density, and the lowest reduction potential. However, the formation of dendrites, dendritic crystals that arise during the charge and discharge process, has posed safety and lifetime stability challenges. To resolve this, our study has introduced a novel separator design. This separator features a composite coating of vapor-grown carbon fiber, a conductive material in nanofibers, and silver. We have meticulously studied the impact of this innovative separator on the electrochemical properties of the lithium metal anode, unveiling promising results. To confirm the synergistic effect of VGCF and Ag, a separator with no surface treatment and a separator with only VGCF coated on one side were prepared and compared with the Ag-VGCF-separator. In the case of the bare separator, the Li metal surface is covered with dendrites during the initial charge and discharge process. In contrast, both the VGCF-separator and the Ag-VGCF-separator show Li precipitation inside the conductive coating layer coated on the separator surface. Additionally, the Ag-VGCF-separator showed a more uniform precipitate shape than the VGCF-separator. As a result, the Ag-VGCF-separators show improved electrochemical properties compared to the bare separators and the VGCF-separators.

리튬금속(Li metal)은 높은 비용량과 에너지 밀도, 낮은 표준 전극 전위로 인해 유망한 음극활 물질로 각광받아온 재료이지만, 충·방전 시 발생하는 수지상 결정인 덴드라이트(dendrite)로 인해 안전성 및 수명안정성에 한계가 있었다. 본 연구에서는 나노 파이버(Nano Fiber) 형태의 도전재인 vapor grown carbon fiber (VGCF)와 은(Ag)의 복합체가 코팅된 분리막을 개발하였으며, 해당 분리막이 리튬금속 음극의 전기화학 특성에 미치는 영향을 연구하였다. VGCF와 Ag의 시너지 효과를 확인하기 위하여 표면 처리되지 않은 분리막, VGCF만 단면 코팅 처리된 분리막을 각각 준비하여 Ag-VGCF 분리막과 비교 평가하였다. Bare 분리막의 경우, 초기 충·방전 과정에서 리튬금속 표면이 덴드라이트로 뒤덮인 반면, VGCF 분리막 및 Ag-VGCF 분리막 모두 분리막 표면에 코팅된 전도성 코팅층 내부에 리튬이 석출되는 거동을 보였다. 또한 Ag-VGCF 분리막은 VGCF 분리막 대비 더욱 균일한 형상의 석출 형태를 보였다. 그 결과 Ag-VGCF 분리막은 Bare 분리막 및 VGCF 분리막 대비 향상된 전기화학적 특성을 보였다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021R1I1A3059728). This work was also supported by the Technology Innovation Program (no. 20015759) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2018R1A6A1A03026005).

References

  1. A. L. Mong, Q. X. Shi, H. Jeon, Y. S. Ye, X. L. Xie, and D. Kim, Tough and flexible, super ion-conductive electrolyte membranes for lithium-based secondary battery applications, Adv. Funct. Mater., 31(12), 2008586 (2021).
  2. X. Hu, Z. Deng, X. Lin, Y. Xie, and R. Teodorescu, Research directions for next-generation battery management solutions in automotive applications, Renew. Sustain. Energy Rev., 152, 111695 (2021).
  3. M. Li, J. Lu, Z. Chen, and K. Amine, 30 years of lithium-ion batteries, Adv. Mater., 30(33), 1800561 (2018).
  4. T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, Lithium-ion batteries: outlook on present, future, and hybridized technologies, J. Mater. Chem. A, 7, 2942-2964 (2019).
  5. Z. Liu, Y. Jiang, Q. Hu, S. Guo, L. Yu, Q. Li, Q. Liu, and X. Hu, Safer lithium-ion batteries from the separator aspect: Development and future perspectives, Energy Environ. Mater., 4(3), 336-362 (2021).
  6. X. Chen, W. Shen, T. T. Vo, Z. Cao, and A. Kapoor, An overview of lithium-ion batteries for electric vehicles, 2012 10th International Power & Energy Conference (IPEC), Ho Chi Minh City, Vietnam, 230-235 (2012).
  7. B. E. Murdock, K. E. Toghill, and N. Tapia-Ruiz, A perspective on the sustainability of cathode materials used in lithium-ion batteries, Adv. Energy Mater., 11(39), 2102028 (2021).
  8. H. S. Oktaviano, K. Yamada, and K. Waki, Nano-drilled multiwalled carbon nanotubes: characterizations and application for LIB anode materials, J. Mater. Chem., 22, 25167-25173 (2012).
  9. S. Zhang, G. Yang, Z. Liu, X. Li, X. Wang, R. Chen, F. Wu, Z. Wang, and L. Chen, Competitive solvation enhanced stability of lithium metal anode in dual-salt electrolyte, Nano Lett., 21(7), 3310-3317 (2021).
  10. M. Noel and V. Suryanarayanan, Role of carbon host lattices in Li-ion intercalation/de-intercalation processes, J. Power sources, 111(2), 193-209 (2002).
  11. S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood III, The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling, Carbon, 105, 52-76 (2016).
  12. J. Ahn, M. Kim, J. Seo, S. Yoon, and K. Y. Cho, Delineating the relationship between separator parameters and practical lithium metal batteries characteristics, J. Power Sources, 566, 232931 (2023).
  13. B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries, Energy Environ. Sci., 11, 1803-1810 (2018).
  14. Y. Wang, Q. Li, and Y. Xing, Porosity variation of lithium-ion battery separators under uniaxial tension, Int. J. Mech. Sci., 174, 105496 (2020).
  15. J.-A. Choi, S. H. Kim, and D.-W. Kim, Enhancement of thermal stability and cycling performance in lithium-ion cells through the use of ceramic-coated separators, J. Power Sources, 195(18), 6192-6196 (2010).
  16. W. Tang, T. Zhao, K. Wang, T. Yu, R. Lv, L. Li, F. Wu, and R. Chen, Dendrite-free lithium metal batteries enabled by coordination chemistry in polymer-ceramic modified separators, Adv. Funct. Mater., 34(18), 2314045 (2024).
  17. R. Pan, R. Sun, Z. Wang, J. Lindh, K. Edstrom, M. Stromme, and L. Nyholm, Double-sided conductive separators for lithium-metal batteries, Energy Storage Mater., 21, 464-473 (2019).
  18. H. Ye, S. Xin, Y. X. Yin, and Y. G. Guo, Advanced porous carbon materials for high-efficient lithium metal anodes, Adv. Energy Mater., 7(23), 1700530 (2017).
  19. Z. Liu, S. Ha, Y. Liu, F. Wang, F. Tao, B. Xu, R. Yu, G. Wang, F. Ren, and H. Li, Application of Ag-based materials in high-performance lithium metal anode: A review, J. Mater. Sci. Technol., 133, 165-182 (2023).
  20. F. Guo, C. Wu, H. Chen, F. Zhong, X. Ai, H. Yang, and J. Qian, Dendrite-free lithium deposition by coating a lithiophilic heterogeneous metal layer on lithium metal anode, Energy Storage Mater., 24, 635-643 (2020).
  21. M. Takeno, T. Fukutsuka, K. Miyazaki, and T. Abe, Influence of carbonaceous materials on electronic conduction in electrode-slurry, Carbon, 122, 202-206 (2017).
  22. Y. Yang, J. Xiong, J. Zeng, J. Huang, and J. Zhao, VGCF 3D conducting host coating on glass fiber filters for lithium metal anodes, Chem. Commun., 54, 1178-1181 (2018).
  23. S. Kennedy, J. Kim, J. Kim, I. Phiri, and S.-Y. Ryou, Water-based dual polymer ceramic-coated composite separator for high-energy-density lithium secondary batteries, J. Ind. Eng. Chem., 130, 638-647 (2024).
  24. X. Wu, Z. Wang, L. Chen, and X. Huang, Ag-enhanced SEI formation on Si particles for lithium batteries, Electrochem. Commun., 5(11), 935-939 (2003).
  25. J. Oh, H. Jo, H. Lee, H.-T. Kim, Y. M. Lee, and M.-H. Ryou, Polydopamine-treated three-dimensional carbon fiber-coated separator for achieving high-performance lithium metal batteries, J. Power Sources, 430, 130-136 (2019).
  26. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, Ultrafine silver nanoparticles for seeded lithium deposition toward stable lithium metal anode, Adv. Mater., 29(38), 1702714 (2017).