DOI QR코드

DOI QR Code

Study on The Effect of Electrode Drying Temperature on The Silicon Electrode Characteristics of Lithium Secondary Batteries

전극 건조 온도가 리튬이차전지의 실리콘 전극 특성에 미치는 영향 연구

  • Dong-Wan Ham (Hanbat National University) ;
  • Myeong-Hui Jeong (Hanbat National University) ;
  • Jeong-Tae Kim (Hanbat National University) ;
  • Beom-Hui Lee (Hanbat National University) ;
  • Hyeon-Mo Moon (Hanbat National University) ;
  • Sun-Yul Ryou (Hanbat National University)
  • 함동완 (한밭대학교 화학생명공학과) ;
  • 정명희 (한밭대학교 화학생명공학과) ;
  • 김정태 (한밭대학교 화학생명공학과) ;
  • 이범희 (한밭대학교 화학생명공학과) ;
  • 문현모 (한밭대학교 화학생명공학과) ;
  • 유선율 (한밭대학교 화학생명공학과)
  • Received : 2024.04.26
  • Accepted : 2024.07.22
  • Published : 2024.08.31

Abstract

The electrodes of commercialized lithium secondary batteries are manufactured through a wet coating process, and the drying process (DC) is a very important factor as to electrode production speed and process cost. In this study, silicon anodes were manufactured under high-temperature (180 ℃) and low-temperature (50 ℃) DC to investigate the quality and the electrochemical performance of Si-electrodes according to DC. High-temperature DC can quickly evaporate the solvent in the Si-electrode slurry, improving the electrode production rate. However, this also causes the electrode composite to peel off from the current collector. As a result, the Si-electrode's adhesion weakened, and the electrode coating's quality deteriorated. In addition, the Si-electrode manufactured under high-temperature was found to have a thicker composite material than the Si-electrode manufactured under low-temperature. Si-electrodes manufactured under high-temperature had higher sheet resistance and lower electrical conductivity than those manufactured under low-temperature. Consequently, the Si-electrode manufactured under low-temperature showed 152.5% superior cycle performance compared to the Si-electrode manufactured under high-temperature. (Discharge capacities of Si-electrodes manufactured under high-temperature and low-temperature DC were 844 and 1287 mAh g-1, respectively, after 300 cycles). Establishing the DC of Si-electrodes can easily provide new perspectives to improve the quality and stability of Si-electrodes.

상용화된 리튬이차전지의 전극은 습식 공정을 통해 제조되고 있으며, 전극의 건조공정은 전극 생산속도 및 공정비용 측면에서 매우 중요한 요소이다. 본 연구에서는 실리콘 전극의 건조 조건에 따른 품질 및 이를 포함하는 전극의 전기화학적 성능을 조사하고자, 고온(180 ℃) 및 저온(50 ℃) 건조 조건에서 실리콘 음극을 제조하였다. 고온 건조 조건은 전극 슬러리 내 용매를 빠르게 증발시키며 전극 생산속도를 향상시킬 수 있지만, 집전체로부터 전극 복합체의 박리를 유발하였다. 그 결과 실리콘 전극의 접착력을 약화시키고 전극 코팅 품질을 감소시켰으며, 저온 대비 고온 건조 조건에서 제조된 실리콘 전극은 두꺼운 복합체 두께를 보였다. 180 ℃ 전극은 50 ℃ 전극보다 면저항이 컸으며, 전기전도도는 낮았다. 또한 50 ℃ 전극은 180 ℃ 전극 대비 152.5% 우수한 수명 특성을 보였다(300회의 충·방전 이후 180 ℃ 전극 용량 = 844 mAh g-1, 50 ℃ 전극 용량 = 1287 mAh g-1). 실리콘 전극에 대한 건조 조건 설정은 손쉽게 실리콘 전극의 품질 및 안정성을 향상시킬 수 있는 새로운 시각을 제공할 수 있다.

Keywords

Acknowledgement

This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2021R1I1A3059728). This work was also supported by the Technology Innovation Program (no. 20015759) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea), the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (no. 2018R1A6A1A03026005).

References

  1. K. Mukhopadhyay and O. Forssell, An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973-1974 to 1996-1997, Ecol. Econ., 55(2), 235-250 (2005).
  2. O. Schachter, The emergence of international environmental law, J. Int. Aff., 44(2), 457-493 (1991).
  3. D. Sprinz and T. Vaahtoranta, The interest-based explanation of international environmental policy. In: P. M. Hass (ed.), International Environmental Governance, Routledge, 131-159 (2017).
  4. Z. Yang, Y. Liu, L. Wu, S. Martinet, Y. Zhang, M. Andre, and H. Mao, Real-world gaseous emission characteristics of Euro 6b light-duty gasoline-and diesel-fueled vehicles, Transp. Res. D: Transp. Environ., 78, 102215 (2020).
  5. A. K. Agarwal and N. N. Mustafi, Real-world automotive emissions: Monitoring methodologies, and control measures, Renew. Sustain. Energy Rev., 137, 110624 (2021).
  6. F. Un-Noor, S. Padmanaban, L. Mihet-Popa, M. N. Mollah, and E. Hossain, A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development, Energies, 10(8), 1217 (2017).
  7. R. T. Yadlapalli, A. Kotapati, R. Kandipati, and C. S. Koritala, A review on energy efficient technologies for electric vehicle applications, J. Energy Storage, 50, 104212 (2022).
  8. B. Diouf and R. Pode, Potential of lithium-ion batteries in renewable energy. Renewable Energy 2015, 76, 375-380.
  9. M. Wakihara, Recent developments in lithium ion batteries, Mater. Sci. Eng. R: Rep., 33(4), 109-134 (2001).
  10. B. Kennedy, D. Patterson, and S. Camilleri, Use of lithium-ion batteries in electric vehicles. J. Power Sources, 90(2), 156-162 (2000).
  11. G. E. Blomgren, The development and future of lithium ion batteries. J. Electrochem. Soc., 164(1), A5019 (2016).
  12. F. Krause, J.-P. Ruiz, S. Jones, E. Brandon, E. Darcy, C. Iannello, and R. Bugga, Performance of commercial Li-ion cells for future NASA missions and aerospace applications. J. Electrochem. Soc., 168(4), 040504 (2021).
  13. J. Oh, D. Jin, K. Kim, D. Song, Y. M. Lee, and M.-H. Ryou, Improving the cycling performance of lithium-ion battery Si/graphite anodes using a soluble polyimide binder, ACS Omega, 2(11), 8438-8444 (2017).
  14. C. Wolke, B. A. Sadeghi, G. G. Eshetu, E. Figgemeier, M. Winter, and I. Cekic-Laskovic, Interfacing Si-based electrodes: Impact of liquid electrolyte and its components, Adv. Mater. Interfaces, 9(8), 2101898 (2022).
  15. W. Zhang, T. H. Cai, and B. W. Sheldon, The impact of initial SEI formation conditions on strain-induced capacity losses in silicon electrodes, Adv. Energy Mater., 9(5), 1803066 (2019).
  16. T. Yoon, M. S. Milien, B. S. Parimalam, B. L. Lucht, Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries, Chem. Mater., 29(7), 3237-3245 (2017).
  17. M. A. Rahman, G. Song, A. I. Bhatt, Y. C. Wong, and C. Wen, Nanostructured silicon anodes for high-performance lithium-ion batteries, Adv. Funct. Mater., 26(5), 647-678 (2016).
  18. B. Liu, Y. Jia, J. Li, H. Jiang, S. Yin, and J. Xu, Multiphysics coupled computational model for commercialized Si/graphite composite anode, J. Power Sources, 450, 227667 (2020).
  19. X. Li, P. Yan, X. Xiao, J. H. Woo, C. Wang, J. Liu, and J.-G. Zhang, Design of porous Si/C-graphite electrodes with long cycle stability and controlled swelling, Energy Environ. Sci., 10(6), 1427-1434 (2017).
  20. J.-H. Schunemann, H. Dreger, H. Bockholt, and A. Kwade, Smart electrode processing for battery cost reduction. ECS Trans., 73(1), 153 (2016).
  21. Y. S. Zhang, N. E. Courtier, Z. Zhang, K. Liu, J. J. Bailey, A. M. Boyce, G. Richardson, P. R. Shearing, E. Kendrick, and D. J. Brett, A review of lithium-ion battery electrode drying: mechanisms and metrology, Adv. Energy Mater., 12(2), 2102233 (2022).
  22. Son Seung Cheol; Song Yeong Jin; Park Hwa Sik; Hoang Ho Jung, Automatic System Development of 4-Point Probe for Sheet Resistance Measurement. The Institute of Electronics and Information Engineers, 8(1), 218-220 (1990).