• Title/Summary/Keyword: composite case

Search Result 1,604, Processing Time 0.036 seconds

Structural Performance of Y Type Plate Connection between Circular CFT Column and H Shape Steel Beam (Y형 플레이트를 적용한 원형 CFT 기둥-H형강 보 접합부의 구조성능)

  • Jo, Hyun-Kook;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.112-118
    • /
    • 2015
  • These days, there are lots of skyscrapers being constructed in downtown areas. However, it requires columns which have a way heavier load. and far more extensive cross sections of column as well. Therefore, it is hard to lay the foundation in downtown areas. This being the case, composite columns such as CFT column are primarily being used. However, CFT column is occurred of difficult beam-column connection development and lower performance since CFT column is closed cross-section. Especially, the result of the study concerning development of connection details with CFT column and exterior diaphragms are very low in current state. In this study, through developing CFT column-H shape steel beam applicating Y shape plate, set width and depth of Y shape plate which affect structural performance of connection details applicating Y shape plate as main variables, and evaluate structural performance through experiments. And also, design Y shape plate used at experiments as setting allowable stress for tension suggested at design criteria lower than axial force of tension side flange connected Y shape plate, through shape of destruction, verify the structural safety and performance of Y shape plate.

Effects of Lycium chinense Powders on the Quality Characteristics of Yellow Layer Cake (구기자 분말의 첨가가 옐로우 레이어 케이크의 품질특성에 미치는 영향)

  • Kim, Yeoung-Ae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.3
    • /
    • pp.403-407
    • /
    • 2005
  • A study was conducted to evaluate the effect of substitution of the flour with Lycium chinense powder on the characteristics of yellow layer cake. Physical properties including specific gravity, specific volume, cake index and color were measured. Also, the hardness change during 6 storage days at 22℃ were measured. Even though the specific gravity of batter decreased significantly with respective addition of 12%, 16% and 20% Lycium chinense powder, the specific volume of cakes did not show difference except the case of 20% addition. The addition of Lycium chinense powder did not influence on cakes' appearance negatively except that of 20% cake. The crust became darker as the level of Lycium chinense powder increased. The crumb color turned into dark orange with addition of Lycium chinense powder, and the intensity became stronger as the level of Lycium chinense powder increased. Both 4% and 8% Lycium chinense powder cakes were scored as same as control in moistness and softness. And they were favored as much as control.

Evaluation of Behavior of Composite Single Lap Joints with Different Finite Element Models (유한요소 모델에 따른 복합재 단일겹치기 접착 조인트부의 거동 평가)

  • Kim, Jung-Seok;Yoon, Hyuk-Jin;Hwang, Jae-Yeon;Yoon, Ji-You;Lee, Seung-Hun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.6
    • /
    • pp.546-551
    • /
    • 2010
  • In this paper, the strain distribution of the bond layer has been compared with the experimental data and analyzed according to the different mesh refinements and element types. The mesh density was changed along the longitudinal direction of adherend, the longitudinal direction of overlapped region, the vertical direction of adherend, the vertical direction of adhesive and the width direction of the joint. In addition, the effect of the different types of element was evaluated using soild, shell and plane strain element. The geometric nonlinear analysis was performed to consider the large deformation of the joint. From the numerical result, at least 2 elements were needed to achieve a reliable result as the solid element used. In case of shell element, the peel strain at x/c=1 showed 22.8% error compared with the experiment but the shear strain showed a good agreement with the experiment within 1.67% error.

Thermal Characteristics Analysis of Upper Arm Hybrid Structure of Lightweight Pantograph Considering Heat Source by Collecting Current (집전전류에 의한 열원을 고려한 경량 판토그래프 상부암 혼성구조체의 열 특성 분석 연구)

  • Park, Chan-Bae;Jeong, Geochul
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.466-473
    • /
    • 2017
  • Recently, domestic railway related institutes are developing pantographs for high speed trains; to lighten the upper arm, this device has a composite structure of CFRP (Carbon Fiber Reinforced Plastic) and aluminum instead of conventional steel. In the case of KTX-Sancheon, the pantograph must have a large current capacity because this system is of power-car type, supplying all necessary power for the train through a single pantograph. If the thickness of the pipe is arbitrarily increased in order to increase the current carrying capacity, without analyzing the thermal characteristics of the aluminum pipe, the increase in the weight of the upper arm may cause degradation of the current collecting performance. Therefore, in this paper, using the thermal analysis technique, we analyze the temperature change characteristics of the aluminum pipe of the upper arm over time, while receiving power at the stationary state of the KTX-Sancheon; we also examine the adequacy of the minimum thickness of the aluminum pipe in accordance with the proposed pantograph flow capacity.

Interfacial Durability and Electrical Properties of CNT or ITO/PVDF Nanocomposites for Self-Sensor and Micro Actuator (자체-센서와 미세 작동기를 위한 CNT/PVDF 및 ITO/PVDF 나노복합재료의 전기적 및 계면 내구성 비교 평가)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.12-17
    • /
    • 2011
  • Interfacial durability and electrical properties of CNT or ITO coated PVDF nanocomposites were investigated for self-sensor and micro actuator applications. Electrical resistivity of nanocomposites for the durability on interfacial adhesion was measured using four points method via fatigue test under cyclic loading. CNT/PVDF nanocomposite exhibited lower electrical resistivity and good self-sensing performance due to inherent electrical property. Durability on the interfacial adhesion was good for both CNT and ITO/PVDF nanocomposites. With static contact angle measurement, surface energy, work of adhesion, and spreading coefficient between either CNT or ITO and PVDF were obtained to verify the correlation with interfacial adhesion durability. The optimum actuation performance of CNT or ITO coated PVDF specimen was measured by the displacement change using laser displacement sensor with changing frequency and voltage. The displacement of actuated nanocomposites decreased with increasing frequency, whereas the displacement increased with voltage increment. Due to nanostructure and inherent electrical properties, CNT/PVDF nanocomposite exhibited better performance as self-sensor and micro actuator than ITO/PVDF case.

Interfacial Durability and Acoustic Properties of Transparent xGnP/PVDF/xGnP Graphite Composites Film for Acoustic Actuator (음향 작동기를 위한 투명한 xGnP/PVDF/xGnP 그래핀 복합재료 필름의 계면 내구성 및 음향 특성)

  • Gu, Ga-Young;Wang, Zuo-Jia;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.70-75
    • /
    • 2012
  • Interfacial durability and electrical properties of CNT, ITO or xGnP coated PVDF nanocomposites were investigated for acoustic actuator applications. The xGnP coated PVDF nanocomposite exhibited better electrical conductivity than CNT and ITO case due to the unique electrical property of xGnP, and this nanocomposite also showed good sound characteristics. Interfacial adhesion durability between either neat CNT or plasma treated CNT and plasma treated PVDF were measured by static contact angle, surface energy, work of adhesion, and spreading coefficient tests. The optimum acoustic actuation performance of xGnP coated PVDF nanocomposite was measured using sound level meter with changing radius of curvature and coating conditions. As compared to CNT and ITO, the xGnP was known as more appropriate acoustic actuator due to the characteristic electrical property. It is the most appropriate condition when the radius of curvature is 15 degree. Although sound characteristics were different with various coating thicknesses, it is possible to manufacture transparent actuator with good sound quality.

Impact of Fiber Projection from GMT-Sheet Moldings on Surface Unevenness (GMT-Sheet 성형품의 표면요철에 미치는 섬유돌출의 영향)

  • Kim, Hyoung-Seok;Kim, Jin-Woo;Kim, Yong-Jae;Lee, Dong-Gi
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.31-36
    • /
    • 2011
  • According to the evaluation on GMT-sheet by molding conditions, fiber projection on the moldings surface was investigated. Fiber projection is one of the major defects on moldings surface due to matrix shrinkage. That is, fiber projection happens from different shrinkage of matrix and glass fiber. Height of fiber projection from moldings surface becomes smaller when molding pressure is higher during holding pressure and cooling process. Height of fiber projection is dominantly affected by molding pressure. With consideration of molding pressure, the formation of surface unevenness and change in fiber projection height was elucidated. In addition, coating layer is effective to suppress surface defects, and there is no fiber projection or crack in case that coating is applied. Coating layer improves surface roughness up to the level of the polypropylene which is a single material.

Validation of Piezoelectric Sensor Diagnostics Algorithm Using Instantaneous Baseline Data (Admittance를 기반으로 한 센서 자가 진단 알고리즘의 실험적 검증 - 상호비교를 통한 센서 결함 탐지)

  • Jo, HyeJin;Jung, Hwee Kwon;Park, Tong il;Park, Gyuhae
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.148-154
    • /
    • 2015
  • In order to detect damage in early stages and properly maintaining structures, the structural health monitoring technology is employed. In most cases, active-sensing SHM needs many piezoelectric (PZT) sensors and actuators. Thus, if there is a defect on PZT used for active-sensing SHM, the structural status could be misclassified. This study, for reliable SHM performance, investigated to detect defects of sensors by using the admittance-based sensor diagnostics. This study also introduced an algorithm that can diagnose sensor defects based only on data measured from the sensors in case that information about the changes in adhesive and environmental investigation, this study confirms that the proposed algorithm could be efficiently applied to real-world structures in which a significant temperature variation could take place.

Impact Resistance Properties of High Strength Fiber-Reinforced Composites According to Types and Amounts of Fibers (섬유 종류 및 혼입량에 따른 고강도 섬유보강 복합재료의 충돌 저항 성능)

  • Choi, Jeong-Il;Park, Se-Eon;Kim, Gyu-Yong;Lee, Sang-Kyu;Lee, Bang Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.349-355
    • /
    • 2020
  • The purpose of this study is to investigate the effects of types and amounts of fibers on the compressive strength and tensile behavior high strength fiber-reinforced composites under a static load and impact resistance properties of composites under a high-velocity projectile impact load. Three kinds of mixtures were designed and specimens were manufactured. compressive strength, uniaxial tension, and high velocity projectile impact load tests were performed. Test results showed that the amount of fiber has a greater effect on the tensile strength an d tensile strain capacity than the compressive strength, an d the tensile strain capacity was improved by using hybrid fibers. It was also found that the amount of steel fiber had a great influence on the impact resistance capacity of panels. Although the impact resistance capacity of panels could be improved by using hybrid fibers, the difference of impact resistance capacity between specimens was found to be larger than the case of use of single fiber.

Evaluation of Electrical Degradation in Epoxy Composites by DC Dielectric Breakdown Properties (DC 절연파괴 특성을 이용한 Epoxy 복합체의 전기적 열화 평가)

  • 임중관;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.779-783
    • /
    • 2002
  • The dielectric breakdown of epoxy composites used for transformers was experimented and then its data were simulated by Weibull distribution probability. As a result, first of all, speaking of dielectric breakdown properties, the more hardener increased the stronger breakdown strength at low temperature because of cross-linked density by the virtue of ester radical. And the breakdown strength of specimens with filler was lower than it of non-filler specimens because it is believed that the adding filler forms interface and charge is accumulated in it, therefore the molecular motility is raised, the electric field is concentrated, and the acceleration of electron and the growth of electron avalanche are early accomplished. In the case of filled specimens with treating silane, the breakdown strength become much higher since this suggests that silane coupling agent improves interfacial combination and relaxs electric field concentration. Finally, from the analysis of weibull distribution, it was confirmed that as the allowed breakdown probability was given by 0.1%, the applied field value needed to be under 21.5MVcm.

  • PDF