• Title/Summary/Keyword: composite 3D printing

Search Result 68, Processing Time 0.022 seconds

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Production of 3D Printer Filament Using Exfoliated Graphene and Recycled PP Composite and Their Application to 3D Printing (재활용 PP와 박리 그래핀을 이용한 3D 프린터용 원사의 제조 및 3D 프린터를 이용한 성형)

  • Lee, Jaeyu;Lee, Jea Uk;Lee, Kyung Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2021
  • In this study, 3D printing filaments using recycled polypropylene (rPP) were produced by a single screw extruder. Graphene composite filament was also prepared using electrochemically exfoliated graphene (EEG) as a composite filler by adding 10, and 20 wt% of EEG to rPP. The graphene and rPP were successfully dispersed with great homogeneity, so that 3D filaments were uniformly produced, and their thermal properties increased as the graphene content increased. The mechanical property was also improved when EEG was 10 wt% but decreased when EEG was 20 wt% compared to that of rPP. 3D structures were successfully manufactured using prepared 3D filaments by a conventional 3D printer, and great advantages can be expected in terms of environmental and economical perspective by adopting plastic waste.

Shrinkage Characteristic of Cementitious Composite Materials for Additive Manufacturing (적층공법을 적용한 시멘트계 복합재료의 수축특성)

  • Lee, Hojae;Kim, Ki-Hoon;Yoo, Byeong-Hyun;Kim, Won-Woo;Moon, Jae-Heum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.99-104
    • /
    • 2019
  • In the present study is focused on the evaluation of the shrinkage characteristics of mix proportion using viscosity agent for printing. Also, another purpose is to compare the shrinkage properties of the mold cast specimen with the additive manufactured specimen using 3D printing techniques. Viscosity agent makes the shrinkage was reduced by an average of 25% (as of 56 days) compared to the reference mix. The effects of reduced shrinkage were also founded, with a reduction of about 15% (as of 28 days).As a result of evaluating the shrinkage using the additive manufactured specimen and the mold cast specimen prepared by the printing mix, the shrinkage of the additive manufactured specimen was reduced by about 25% (based on 28 days). Based on the results of this study, it is possible to predict the shrinkage rate and the occurrence of cracks due to shrinkage on the printing of cement-based composite materials using 3D printing.

A Study on the Improvement of Bending Characteristics of 3D Printed Thermoplastic Structures Reinforced at the Lateral Surface using Continuous Fiber Reinforced Thermosetting Composites (열경화성 연속섬유 복합재를 이용해 외측 보강된 3D 프린팅 열가소성 복합재 구조물의 굽힘 특성 향상에 대한 연구)

  • Baek, Un-Gyeong;Nam, Gibeop;Roh, Jae-Seung;Park, Sung-Eun;Roh, Jeong-U
    • Composites Research
    • /
    • v.34 no.2
    • /
    • pp.136-142
    • /
    • 2021
  • 3D printing technology has the advantage of easy to make various shapes of products without a mold. However, it has a problem such as mechanical properties vary greatly depending on materials and manufacturing conditions. Thus, the need for research of 3D printing technology on ways to reduce manufacturing cost compared to physical properties is increasing. In this study, a 3D printing thermoplastic structure was fabricated using short fiber carbon fiber reinforced nylon filaments. And a method of improving mechanical properties was proposed by reinforcing the outer surface using pultruded continuous fiber-type carbon fiber or glass fiber-reinforced thermosetting composite material. It was confirmed that the bending properties were improved according to the reinforcing position of the stiffener and the type of fiber in the stiffener.

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

Evaluation of Metal Composite Filaments for 3D Printing (3D 프린팅용 금속 입자 필라멘트의 물성 및 차폐 능력 평가)

  • Park, Ki-Seok;Choi, Woo-Jeon;Kim, Dong-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.697-704
    • /
    • 2021
  • It is hard to get Filaments which are materials of the 3D printing Fused Deposition Modeling(FDM) method as radiation shielding in Korea. and also related research is insufficient. This study aims to provide basic data for the development of radiation shields using 3D printing by evaluating the physical properties and radiation shielding capabilities of filaments containing metal particles. after selecting five metal filaments containing metal particle reinforcement materials, the radiation shielding rate was calculated according to the Korean Industrial Standard's protective equipment test method to evaluate physical properties such as tensile strength, density, X-ray Diffraction(XRD), and weight measurement using ASTM's evaluation method. In the tensile strength evaluation, PLA + SS was the highest, ABS + W was the lowest, and ABS + W is 3.13 g/cm3 which value was the highest among the composite filaments in the density evaluation. As a result of the XRD, it may be confirmed that the XRD peak pattern of the particles on the surface of the specimen coincides with the pattern of each particle reinforcing material powder metal, and thus it was confirmed that the printed specimen contained powder metal. The shielding effect for each 3D printed composite filament was found to have a high shielding rate in proportion to the effective atomic number and density in the order of ABS + W, ABS + Bi, PLA+SS, PLA + Cu, and PLA + Al. In this study, it was confirmed that the metal particle composite filament containing metal powder as a reinforcing material has radiation shielding ability, and the possibility of using a radiation shielding filament in the future.

Development of Eco-Friendly Filament for 3D Printing using Organic Soybean Hulls (유기농 대두피를 이용한 3D 프린팅용 친환경 필라멘트 개발)

  • Dong-Hyuk Choi;Hui-Yun Hwang
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.448-453
    • /
    • 2023
  • This paper explores developing sustainable 3D printing filaments using organic soybean hulls mixed with polylactic acid (PLA). The study experiments with various particle sizes and mixing ratios, examining the physical and mechanical properties of the resulting filaments. Results show that smaller soybean hull particles and specific mixing ratios enhance the filament's quality while maintaining PLA's characteristics. This research signifies a step towards environmentally friendly 3D printing materials, offering a viable alternative to conventional filaments and addressing ecological concerns in the industry.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Structural Behavior Analysis of Polymer Lattice Reinforced 3D Printing Cementitious Cladding (폴리머 격자 보강재를 이용한 3D 프린팅 시멘트계 외장재의 구조 거동 분석)

  • Kim, Hak-Beom;Park, Min-Jae;Ju, Young K.
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.11
    • /
    • pp.3-10
    • /
    • 2018
  • Cladding that finishes the exterior of a building could enhance the value of the building, and shape control is an important factor. With the recent development of 3D printing, cementitious claddings were printed by 3D printer in China, U.S.A and elsewhere. On the other hand, the structural safety of the exterior panel should be examined, as casualties occur when the exterior panel fails due to typhoon or impact. Cement-based cladding is reinforced by wire mesh to improve safety. Introducing 3D printing composite system with polymer and cement, makes it possible to produce claddings fast and accurate. Prior to the development of 3D printing cementitious cladding, the major parameters influencing the optimal shape were identified based on structural performance. The wind load, joint, and bond behavior between polymer and cement were considered. Polymer laminate shape, order, and thickness were variables, and finite element analysis was performed.

3D Printing of Tungsten-Polymer Composites for Radiation Shielding (방사선 차폐를 위한 3D 프린팅용 텅스텐-고분자 복합체 설계)

  • Eom, Don-Geon;Kim, Shin-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.643-650
    • /
    • 2020
  • The materials with a high processiblity for radiation shielding, in particular for 3D printable materials, are highly demanding for producing robots working in nuclear plants and designing customized personal protection equipment. In this study, we suspend tungsten particles in a polymeric matrix of either PLA or ABS to compose tungsten-polymer composite filaments; PLA and ABS are widely used for conventional FDM-based 3D printing. The weight fraction of tungsten particles can be increased up to 50% without forming macroscopic aggregates. The composite filaments can be used to print 3D architectures with any shape and geometry. To demonstrate one of potential applications, we print parts for robot actuator and assemble them to protect PCB against gamma ray.