DOI QR코드

DOI QR Code

Production of 3D Printer Filament Using Exfoliated Graphene and Recycled PP Composite and Their Application to 3D Printing

재활용 PP와 박리 그래핀을 이용한 3D 프린터용 원사의 제조 및 3D 프린터를 이용한 성형

  • Lee, Jaeyu (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Jea Uk (Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University) ;
  • Lee, Kyung Jin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이재유 (충남대학교 응용화학공학과) ;
  • 이제욱 (경희대학교 정보전자신소재공학과) ;
  • 이경진 (충남대학교 응용화학공학과)
  • Received : 2021.02.05
  • Accepted : 2021.02.22
  • Published : 2021.04.10

Abstract

In this study, 3D printing filaments using recycled polypropylene (rPP) were produced by a single screw extruder. Graphene composite filament was also prepared using electrochemically exfoliated graphene (EEG) as a composite filler by adding 10, and 20 wt% of EEG to rPP. The graphene and rPP were successfully dispersed with great homogeneity, so that 3D filaments were uniformly produced, and their thermal properties increased as the graphene content increased. The mechanical property was also improved when EEG was 10 wt% but decreased when EEG was 20 wt% compared to that of rPP. 3D structures were successfully manufactured using prepared 3D filaments by a conventional 3D printer, and great advantages can be expected in terms of environmental and economical perspective by adopting plastic waste.

본 연구에서는 1축 extruder를 원사 압출 장비로 사용하여 재활용 폴리프로필렌(rPP)으로 3D 프린터용 원사를 제조하였고, 전기화학적 박리 그래핀을 rPP 대비 10, 20 wt%로 첨가하여 그래핀 복합체 원사를 제조하였다. 전기화학적 박리그래핀은 그 분산도가 우수하여 균일한 rPP/그래핀 복합체 원사 제조를 가능하게 하였다. 그래핀의 함량이 증가할수록 열분해 속도 등 열적 성능이 향상되었다. 기계적 물성 또한 rPP 대비 그래핀 함량이 10 wt%일 때 증가하였는데, 20 wt%에서는 오히려 기계적 물성이 감소하는 것을 볼 수 있었다. 제조한 원사들을 사용하여 상용 3D 프린터를 통해 3D 성형체를 성공적으로 제조할 수 있었으며, 폐플라스틱을 재활용하여 제조하였기 때문에 환경적, 경제적으로 이점을 가질 것으로 기대된다.

Keywords

References

  1. I. Hager, A. Golonka, and R. Putanowicz, 3D printing of buildings and building components as the future of sustainable construction?, Procedia Eng., 151, 292-299 (2016). https://doi.org/10.1016/j.proeng.2016.07.357
  2. N. Noor, A. Shapira, R. Edri, I. Gal, L. Wertheim, and T. Dvir, 3D Printing of personalized thick and perfusable cardiac patches and hearts, Adv. Sci., 6, 1900344 (2019). https://doi.org/10.1002/advs.201900344
  3. M. S. Mannoor, Z. Jiang, T. James, Y. L. Kong, K. A. Malatesta, W. O. Soboyejo, N. Verma, D. H. Gracias, and M. C. McAlpine, 3D printed bionic ears, Nano Lett., 13, 2634-2639 (2013). https://doi.org/10.1021/nl4007744
  4. J. Sun, W. Zhou, D. Huang, J. Y. H. Fuh, and G. S. Hong, An overview of 3D printing technologies for food fabrication, Food Bioprocess Technol., 8, 1605-1615 (2015). https://doi.org/10.1007/s11947-015-1528-6
  5. A. Ambrosi and M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev., 45, 2740-2755 (2016). https://doi.org/10.1039/c5cs00714c
  6. X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, 3D printing of polymer matrix composites: A review and prospective, Compos. B Eng., 110, 442-458 (2017). https://doi.org/10.1016/j.compositesb.2016.11.034
  7. T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. B Eng., 143, 172-196 (2018). https://doi.org/10.1016/j.compositesb.2018.02.012
  8. J. R. C. Dizon, A. H. Espera Jr, Q. Chen, and R. C. Advincula, Mechanical characterization of 3D-printed polymers, Addit. Manuf., 20, 44-67 (2018).
  9. G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling, Compos. A Appl. Sci. Manuf., 76, 110-114 (2015). https://doi.org/10.1016/j.compositesa.2015.05.014
  10. H. Jeon, Y. Kim, W.-R. Yu, and J. U. Lee, Exfoliated graphene-thermoplastic elastomer nanocomposites with improved wear properties for 3D printing, Compos. B Eng., 189, 107912 (2020). https://doi.org/10.1016/j.compositesb.2020.107912
  11. M. Nikzad, S. H. Masood, and I. Sbarski, Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling, Mater. Des., 32, 3448-3456 (2011). https://doi.org/10.1016/j.matdes.2011.01.056
  12. S. Hwang, E. L. Reyes, K.-S. Moon, R. C. Rumpf, and N. S. Kim, Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process, J. Electron. Mater., 44, 771-777 (2015). https://doi.org/10.1007/s11664-014-3425-6
  13. E. Fantino, A. Chiappone, F. Calignano, M. Fontana, F. Pirri, and I. Roppolo, In situ thermal generation of silver nanoparticles in 3D printed polymeric structures, Materials, 9, 589 (2016). https://doi.org/10.3390/ma9070589
  14. A. E. Jakus, E. B. Secor, A. L. Rutz, S. W. Jordan, M. C. Hersam, and R. N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications, ACS Nano, 9, 4636-4648 (2015). https://doi.org/10.1021/acsnano.5b01179
  15. E. Jabari, F. Liravi, E. Davoodi, L. Lin, and E. Toyserkani, High speed 3D material-jetting additive manufacturing of viscous graphene-based ink with high electrical conductivity, Addit. Manuf., 35, 101330 (2020). https://doi.org/10.1016/j.addma.2020.101330
  16. P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties, Polymer, 52, 4001-4010 (2011). https://doi.org/10.1016/j.polymer.2011.06.045
  17. J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 1, 25-29 (2020).
  18. S. Hertle, M. Drexler, and D. Drummer, Additive manufacturing of poly(propylene) by means of melt extrusion, Macromol. Mater. Eng., 301, 1482-1493 (2016). https://doi.org/10.1002/mame.201600259
  19. L. Lei, Z. Yao, J. Zhou, B. Wei, and H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance, Compos. Sci. Technol., 200, 108479 (2020). https://doi.org/10.1016/j.compscitech.2020.108479
  20. M. Dong, S. Zhang, D. Gao, and B. Chou, The study on polypropylene applied in fused deposition modeling, AIP Conf. Proc., 2065, 030059 (2019).
  21. O. S. Carneiro, A. F. Silva, and R. Gomes, Fused deposition modeling with polypropylene, Mater. Des., 83, 768-776 (2015). https://doi.org/10.1016/j.matdes.2015.06.053
  22. Y. L. Zhong, Z. Tian, G. P. Simon and D. Li, Scalable production of graphene via wet chemistry: Progress and challenges, Mater. Today, 18, 2, 73-78 (2014). https://doi.org/10.1016/j.mattod.2014.08.019
  23. M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, L. G. Cancado, A. Jorio, and R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy, Phys. Chem. Chem. Phys., 9, 1726-1291 (2007).
  24. H. Guo, R. Lv, and S. Bai, Recent advances on 3D printing graphene-based composites, Nano Mater. Sci., 1, 101-115 (2019). https://doi.org/10.1016/j.nanoms.2019.03.003
  25. X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, and Z. Sun, 3D printable graphene composite, Sci. Rep., 5, 11181 (2015). https://doi.org/10.1038/srep11181
  26. S. Sayyar, M. Bjorninen, S. Haimi, S. Miettinen, K. Gilmore, D. Grijpma, and G. Wallace, UV cross-linkable graphene/poly(trimethylene carbonate) composites for 3D printing of electrically conductive scaffolds, ACS Appl. Mater. Interfaces, 8, 31916-31925 (2016). https://doi.org/10.1021/acsami.6b09962
  27. F. A. Hoor, J. Morshedian, S. Ahmadi, M. Rakhshanfar, and A. Bahramzadeh, Effect of graphene nanosheets on the morphology, crystallinity, and the thermal and electrical properties of super tough polyamide 6 using SEBS compounds, J. Chem., 1, 1-6 (2015).
  28. S. Waheed, J. M. Cabot, P. Smejkal, S. Farajikhah, S. Sayyar, P. C. Innis, S. Beirne, G. Barnsley, T. W. Lewis, M. C. Breadmore, and B. Paull, Three-dimensional printing of abrasive, hard, and thermally conductive synthetic microdiamond-polymer composite using low-cost fused deposition modeling printer, ACS Appl. Mater. Interfaces, 11, 4353-4363 (2019). https://doi.org/10.1021/acsami.8b18232