• Title/Summary/Keyword: complex vector bundle

Search Result 18, Processing Time 0.025 seconds

Nontrivial Complex Equivariant Vector Bundles over $S^1$ (원 위에서의 Nontrivial Complex Equivariant Vector Bundle)

  • Kim, Sung-Sook
    • The Journal of Natural Sciences
    • /
    • v.10 no.1
    • /
    • pp.13-16
    • /
    • 1998
  • Every complex vector bundle over $S^1$ splits sum of line bundle and the first Chern class classify complex line bundle. This implies every complex vector bundle over $S^1$ is trivial. In this paper, we show the existence of some nontrivial complex vector bundle over $S^1$ in the equivariant case.

  • PDF

ANTI-LINEAR INVOLUTIONS ON A G-VECTOR BUNDLE

  • Kim, Sung-Sook;Shin, Joon-Kook
    • Communications of the Korean Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.211-216
    • /
    • 1999
  • We study the anti-linear involutions on a real algebraic vector bundle with bundle with a compact real algebraic group action.

  • PDF

UNIFORMITY OF HOLOMORPHIC VECTOR BUNDLES ON INFINITE-DIMENSIONAL FLAG MANIFOLDS

  • Ballico, E.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.85-89
    • /
    • 2003
  • Let V be a localizing infinite-dimensional complex Banach space. Let X be a flag manifold of finite flags either of finite codimensional closed linear subspaces of V or of finite dimensional linear subspaces of V. Let E be a holomorphic vector bundle on X with finite rank. Here we prove that E is uniform, i.e. that for any two lines $D_1$ R in the same system of lines on X the vector bundles E$\mid$D and E$\mid$R have the same splitting type.

A BORSUK-ULAM TYPE THEOREM OVER ITERATED SUSPENSIONS OF REAL PROJECTIVE SPACES

  • Tanaka, Ryuichi
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.251-263
    • /
    • 2012
  • A CW complex B is said to be I-trivial if there does not exist a $\mathbb{Z}_2$-map from $S^{i-1}$ to S(${\alpha}$) for any vector bundle ${\alpha}$ over B a any integer i with i > dim ${\alpha}$. In this paper, we consider the question of determining whether $\Sigma^k\mathbb{R}P^n$ is I-trivial or not, and to this question we give complete answers when k $\neq$ 1, 3, 8 and partial answers when k = 1, 3, 8. A CW complex B is I-trivial if it is "W-trivial", that is, if for every vector bundle over B, all the Stiefel-Whitney classes vanish. We find, as a result, that $\Sigma^k\mathbb{R}P^n$ is a counterexample to the converse of th statement when k = 2, 4 or 8 and n $\geq$ 2k.

A PROPERTY OF COFUNCTORS SF(X,A)

  • So, Kwang Ho
    • Kyungpook Mathematical Journal
    • /
    • v.13 no.2
    • /
    • pp.235-240
    • /
    • 1973
  • A k-dimensional vector bundle is a bundle ${\xi}=(E,P,B,F^k)$ with fibre $F^k$ satisfying the local triviality, where F is the field of real numbers R or complex numbers C ([1], [2] and [3]). Let $Vect_k(X)$ be the set consisting of all isomorphism classes of k-dimensional vector bundles over the topological space X. Then $Vect_F(X)=\{Vect_k(X)\}_{k=0,1,{\cdots}}$ is a semigroup with Whitney sum (${\S}1$). For a pair (X, A) of topological spaces, a difference isomorphism over (X, A) is a vector bundle morphism ([2], [3]) ${\alpha}:{\xi}_0{\rightarrow}{\xi}_1$ such that the restriction ${\alpha}:{\xi}_0{\mid}A{\longrightarrow}{\xi}_1{\mid}A$ is an isomorphism. Let $S_k(X,A)$ be the set of all difference isomorphism classes over (X, A) of k-dimensional vector bundles over X with fibre $F^k$. Then $S_F(X,A)=\{S_k(X,A)\}_{k=0,1,{\cdots}}$, is a semigroup with Whitney Sum (${\S}2$). In this paper, we shall prove a relation between $Vect_F(X)$ and $S_F(X,A)$ under some conditions (Theorem 2, which is the main theorem of this paper). We shall use the following theorem in the paper. THEOREM 1. Let ${\xi}=(E,P,B)$ be a locally trivial bundle with fibre F, where (B, A) is a relative CW-complex. Then all cross sections S of ${\xi}{\mid}A$ prolong to a cross section $S^*$ of ${\xi}$ under either of the following hypothesis: (H1) The space F is (m-1)-connected for each $m{\leq}dim$ B. (H2) There is a relative CW-complex (Y, X) such that $B=Y{\times}I$ and $A=(X{\times}I)$ ${\cap}(Y{\times}O)$, where I=[0, 1]. (For proof see p.21 [2]).

  • PDF

NOTE ON NORMAL EMBEDDING

  • Yi, Seung-Hun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.289-297
    • /
    • 2002
  • It was shown by L. Polterovich ([3]) that if L is a totally real submanifold of a symplectic manifold $(M,\omega)$ and L is parallelizable then L is normal. So we try to find an answer to the question of whether there is a compatible almost complex structure J on the symplectic vector bundle $TM$\mid$_{L}$ such that $TL{\cap}JTL=0$ assuming L is normal and parallelizable. Although we could not reach an answer, we observed that the claim holds at the vector space level. And related to the question, we showed that for a symplectic vector bundle $(M,\omega)$ of rank 2n and $E=E_1{\bigoplus}E_2$, where $E=E_1,E_2$are Lagrangian subbundles of E, there is an almost complex structure J on E compatible with ${\omega}$ and $JE_1=E_2$. And finally we provide a necessary and sufficient condition for a given embedding into a symplectic manifold to be normal.

THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS OF COMPLEX VECTOR BUNDLES

  • Nishinobu, Hirokazu;Yamaguchi, Toshihiro
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.569-579
    • /
    • 2014
  • We consider a condition under which the projectivization $P(E^k)$ of a complex k-bundle $E^k{\rightarrow}M$ over an even-dimensional manifold M can have the hard Lefschetz property, affected by [10]. It depends strongly on the rank k of the bundle $E^k$. Our approach is purely algebraic by using rational Sullivan minimal models [5]. We will give some examples.

ANALYTIC TORSION FOR HOLOMORPHIC VECTOR BUNDLES

  • Kim, Hong-Jong
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.669-670
    • /
    • 1994
  • Let $E \to M$ be a hermitian holomorphic vector bundle over a compact (complex) hermitian manifold M of complex dimension n, and let $$ d"_p(E) : 0 \to A^{p,0}(E) \to A^{p,1}(E) \to \cdots \to A^{p,n}(E) \to 0$$ be the Dolbeault complex. Then $A^{p,q}(E)$ become a prehibert space so that the formal adjoint $\delta"$ of $d"$ and the "Laplacian" $\Delta" = \delta" d" + d" \delta"$ are defined.quot; d" + d" \delta"$ are defined.;$ are defined.

  • PDF

EQUIVARIANT VECTOR BUNDLES AND CLASSIFICATION OF NONEQUIVARIANT VECTOR ORBIBUNDLES

  • Kim, Min Kyu
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.569-581
    • /
    • 2011
  • Let a finite group R act smoothly on a closed manifold M. We assume that R acts freely on M except a union of closed submanifolds with codimension at least two. Then, we show that there exists an isomorphism between equivariant topological complex vector bundles over M and nonequivariant topological complex vector orbibundles over the orbifold M/R. By using this, we can classify nonequivariant vector orbibundles over the orbifold especially when the manifold is two-sphere because we have classified equivariant topological complex vector bundles over two sphere under a compact Lie group (not necessarily effective) action in [6]. This classification of orbibundles conversely explains for one of two exceptional cases of [6].