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THE LEFSCHETZ CONDITION ON PROJECTIVIZATIONS

OF COMPLEX VECTOR BUNDLES

Hirokazu Nishinobu and Toshihiro Yamaguchi

Abstract. We consider a condition under which the projectivization
P (Ek) of a complex k-bundle Ek

→ M over an even-dimensional mani-
fold M can have the hard Lefschetz property, affected by [10]. It depends
strongly on the rank k of the bundle Ek. Our approach is purely alge-
braic by using rational Sullivan minimal models [5]. We will give some
examples.

1. Introduction

A Poincaré duality space Y of the formal dimension

fd(Y ) = max{i;Hi(Y ;Q) 6= 0} = 2m

is said to be cohomologically symplectic (c-symplectic) if um 6= 0 for some
u ∈ H2(Y ;Q) and, furthermore, is said to have the hard Lefschetz property (or
simply the Lefschetz property) with respect to the c-symplectic class u, if the
maps

∪uj : Hm−j(Y ;Q) → Hm+j(Y ;Q), 0 ≤ j ≤ m

are monomorphisms (then called the Lefschetz maps) [17]. For example, a
compact Kähler manifold has the hard Lefschetz property [17], [6, Theorem
4.35]. Recall the Thurston-Weinstein problem [17, p. 198]: “Describe symplectic

compact manifolds with no Kähler structure”. Conversely, what conditions
on a symplectic manifold imply the existence of a Kähler structure or, more
generally, that the manifold satisfies the hard Lefschetz property?

Let M be an even-dimensional manifold and ξ : Ek → M be a complex
k-bundle over M . The projectivization of the bundle ξ

P (ξ) : CP k−1 j
→ P (Ek) → M

satisfies the rational cohomology algebra condition (∗) :

H∗(P (Ek);Q) = H∗(M ;Q)[x]/(xk + c1x
k−1 + · · ·+ ck−jx

j + · · ·+ ck−1x+ ck)
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where ci are the i-th Chern classes of ξ and x is a degree 2 class generating the
cohomology of the complex projective space fiber (Leray-Hirsch theorem) [3],
[10], [17, p. 122]. The manifold P (Ek) appears as the exceptional divisor in
blow-up construction for a certain embedding of M [11], [17, Chap. 4]. When
M is a non-toral symplectic nilmanifold of dimension 2n, there is a bundle En

such that P (En) is not Lefschetz [18], [10, Example 4.4]. In general, for a
2k-dimensional manifold M and a fibration CP k−1 → E → M , the total space
E is Lefschetz if and only if M is Lefschetz [10, Remark 4.2]. We consider the
following:

Problem 1.1. Suppose that the projectivization P (Ek) of a k-dimensional
vector bundle Ek → M is c-symplectic with respect to x̃ where j∗(x̃) = x; i.e.,
x̃m 6= 0 when dimP (Ek) = 2m. What rational homotopical conditions on M
are necessary for P (Ek) to have the Lefschetz property with respect to x̃ ?

Proposition 1.2. Let M be an even dimensional manifold.

(1) For a sufficiently large k, there is a k-dimensional vector bundle Ek → M
such that P (Ek) is c-symplectic with respect to x.

(2) If P (Ek) is c-symplectic with respect to x, then there is a vector bundle

Em → M such that P (Em) is c-symplectic with respect to x for any m > k.

Definition 1.3. An even-dimensional manifold (or more general Poincaré du-
ality space) M is said to be projective (k)-Lefschetz if there exists a complex
k-bundle Ek such that the projectivization P (Ek) is c-symplectic with respect
to x̃ and has the Lefschetz property with respect to x̃. Then we often say sim-
ply that M is projective Lefschetz. In particular, we say that M is projective

non-Lefschetz if P (Ek) cannot have the Lefschetz property for any k and Ek.

In this paper, we recall D.Sullivan’s rational model in §2 and we give some
examples that indicate how the rational cohomology algebra of M determines
the projective (n)-Lefschetzness of M when M is the product of at most four
spheres in §3.

Acknowledgement. The authors would like to thank Shoji Yokura for his
valuable comments on an earlier version of the paper and the referee for many
helpful suggestions.

2. Sullivan model

Let M(Y ) = (ΛV, d) be the Sullivan minimal model of a nilpotent space Y .
It is a freely generated Q-commutative differential graded algebra (abbr. DGA)
with a Q-graded vector space V =

⊕

i≥1 V
i where dimV i < ∞, V admits a

basis {vα} indexed by a well-ordered set {α} such that deg(vα) ≤ deg(vβ)
if α < β and d(vα) ∈ Λ(vβ)β<α. The differential d is a decomposable; i.e.,
d(V i) ⊂ (Λ+V ·Λ+V )i+1. Here Λ+V is the ideal of ΛV generated by elements
of positive degree. Denote the degree of a homogeneous element f of a graded
algebra as |f |. Then xy = (−1)|x||y|yx and d(xy) = d(x)y+(−1)|x|xd(y). Note
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that M(Y ) determines the rational homotopy type of Y . In particular, it is
known that

H∗(ΛV, d) ∼= H∗(Y ;Q) and V i ∼= Hom(πi(Y ),Q).

See [5, §12∼§15] for details. When π∗(Y )⊗Q < ∞ and dimH∗(Y ;Q) < ∞, Y
is said to be elliptic. It is known that

fd(Y ) = fd(ΛV, d) =
∑

i

|yi| −
∑

i

(|xi| − 1)

for V odd = Q(yi)i and V even = Q(xi)i when Y is elliptic [5, §32].

Proposition 2.1. Let M be an even dimensional manifold. Then there is a

graded algebra A = H∗(M ;Q)[x]/(xk+c1x
k−1+ · · ·+ck−jx

j+ · · ·+ck−1x+ck)
with |x| = 2 and ci ∈ H2i(M ;Q) if and only if there is a complex k-bundle
ξ : Ek → M such that ci are the Chern classes of ξ by suitable scalar multiplying

and A is the rational cohomology of P (Ek).

Proof. The set of equivalence classes of complex k-vector bundles over M is
identified as the homotopy set from M to the complex Grassmanian G(k,N)
of k-planes in CN for a sufficiently large N [2, IV]. Then the Chern classes of
a k-bundle are given as f∗(c1(γ)), . . . , f

∗(ck(γ)) for the classifying map f and
the universal bundle γ over G(k,N). Conversely, for given elements c1, . . . , ck,
a rational map M → M(0) → G(k,N)(0) induced by Πici : M → ΠiK(Q, 2i) ≃
BU(k)(0) is factored through a map f : M → G(k,N) [12, Theorem 5.3]
because G(k,N) = U(N)/U(k)× U(N − k) is 0-universal [1, Proposition 3.7].
Here BU(k) is the classifying space of the unitary group U(k) and Y(0) is the
rationalization of a space Y [8]. Thus we obtain the appropriate k-bundle as
the pullback of γ by f . �

Corollary 2.2. The projective Lefschetzness of an even-dimensional manifold

M depends only on the graded algebra H∗(M ;Q).

Let M(CP k−1) = (Q[x] ⊗ Λ(y), d) with d(y) = xk and d(x) = 0. From
Corollary 2.2, the information of P (Ek) that we need in this note is given as
the relative Sullivan model [5, §14] :

(H∗(M ;Q), 0) → (H∗(M ;Q)⊗Q[x]⊗ Λ(y), D) → (Q[x]⊗ Λ(y), d)

with D(f) = 0 for f ∈ H∗(M ;Q), D(x) = 0 and

(∗∗) D(y) = xk + c1x
k−1 + · · ·+ ck−jx

j + · · ·+ ck−1x+ ck,

where ci ∈ H2i(M ;Q) are the Chern classes of ξ. Especially, we don’t need the
assumption that M is nilpotent. Remark that H∗(P (Ek);Q) ∼= H∗(H∗(M ;Q)
⊗Q[x]⊗ Λ(y), D) as a Q-graded algebra and then

Hj(P (Ek);Q) = Hj(M ;Q)⊕Hj−2(M ;Q)x⊕ · · · ⊕Hj−2k+2(M ;Q)xk−1.

Notice that (∗∗) is equivalent to (∗) of §1 and also equivalent to

[xk] = −[c1x
k−1 + · · ·+ ck−jx

j + · · ·+ ck−1x+ ck]
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in H∗(P (Ek);Q), which is the only relation between the elements of H∗(M ;Q)
and x. Then, for example, [xk+1] = −[c1x

k + · · ·+ ck−jx
j+1 + · · ·+ ck−1x

2 +
ckx] = [c21x

k−1 + · · · + (c1ck−j − ck−j+1)x
j + · · · + (c1ck−1 − ck)x + c1ck]. In

particular,

(∗∗∗) [a] 6= 0 in H∗(M ;Q) if and only if [axj ] 6= 0 in H∗(P (Ek);Q)

for any 0 ≤ j < k.

Lemma 2.3. Let A = (H∗(M ;Q)⊗Q[x]⊗Λ(y), D) with D(y) = xk+c1x
k−1+

· · · + ck−1x + ck and let B = (H∗(M ;Q) ⊗ Q[x] ⊗ Λ(y′), D′) with D′(y′) =
xm−kD(y) = xm + c1x

m−1 + · · ·+ ck−1x
m−k+1 + ckx

m−k for k < m. If [f ] 6= 0
in H∗(A), then [fxm−k] 6= 0 in H∗(B).

Proof. Notice that an element of H∗(A) is identified as one of H∗(B) since
H∗(A) is a submodule of H∗(B) over H∗(M ;Q). Suppose that [f ] = [a1x

k−1+
· · · + ak−1x + ak] 6= 0 in H∗(A) for [a∗] ∈ H∗(M ;Q). Then there is an index
i with [ai] 6= 0 in H∗(M ;Q). Thus, in H∗(B), [fxm−k] = [a1x

m−1 + · · · +
ak−1x

m−k+1 + akx
m−k] = [a1]x

m−1 + · · ·+ [ak−1]x
m−k+1 + [ak]x

m−k 6= 0 from
(∗∗∗). �

Proof of Proposition 1.2. From Proposition 2.1, it is sufficient to construct a
certain DGA (H∗(M ;Q)⊗Q[x]⊗ Λ(y), D). Let dimM = 2n.

(1) Let Ω be the fundamental class of M . Then we can define (H∗(M ;Q)⊗
Q[x] ⊗ Λ(y), D) by D(y) = Ωxk−n + xk for k ≥ n. Notice dimP (Ek) =
dimM+dimCP k−1 = 2n+2k−2. Then we have [xn+k−1] = −[(Ωxk−n)xn−1] =
−[Ωxk−1] 6= 0 from (∗ ∗ ∗).

(2) Suppose that the DGA (H∗(M ;Q) ⊗ Q[x] ⊗ Λ(y), D) makes P (Ek) c-
symplectic; i.e., [xn+k−1] 6= 0. Then, for m > k, the DGA (H∗(M ;Q)⊗Q[x]⊗
Λ(y′), D′) with |y′| = 2m − 1 and D′(y′) := xm−kD(y) makes a 2n + 2m −
2-dimensional manifold P (Em) c-symplectic. Indeed, [xn+m−1] = [xn+k−1 ·
xm−k] 6= 0 in cohomology from Lemma 2.3. �

In (2) in Proposition 1.2, the bundle Em is geometrically realized as the
Whitney sum Ek ⊕ θm−k where θm−k is the trivial m − k-bundle over M , in
the manner of Proposition 2.1. Thus, if P (Ek) is c-symplectic with respect to
x, then P (Ek ⊕ θm) is c-symplectic with respect to x for any m > 0.

3. Examples

In this section, let M be a 2-connected even-dimensional manifold and
dimP (Ek) = 2m.

Theorem 3.1. The 2n-dimensional sphere S2n is projective (k)-Lefschetz for

any k ≥ n.

Proof. Let H∗(S2n;Q) = Q[v]/(v2) with |v| = 2n. Consider P (Ek) such that
dimP (Ek) = 2m and D(y) = vxk−n + xk for k ≥ n. Then m = n + k − 1
from 2m = dimCP k−1 + dimS2n = 2n + 2k − 2. Since [xm] = −[vxk−n ·
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xm−k] = −[vxk−1] 6= 0 from (∗ ∗ ∗), P (Ek) is c-symplectic with respect to x.
Furthermore, ∪xk−n−1−2i(vxi) = vxk−n−1−i 6= 0 in

∪xk−n−1−2i : Hm−(k−n−1−2i)(P (Ek);Q) → Hm+(k−n−1−2i)(P (Ek);Q)

for i ≥ 0 Thus S2n is projective (k)-Lefschetz. �

Proposition 3.2. When M has the rational homotopy type of the product

of odd spheres such that H∗(M ;Q) ∼= Λ(v1, v2, . . . , vn) with all |vi| odd and

1 < |v1| ≤ |v2| ≤ · · · ≤ |vn| (n even), then there exists a bundle Ek such

that P (Ek) is c-symplectic if and only if |v1| + |vn| ≤ 2k, |v2| + |vn−1| ≤
2k, . . . , |vn/2|+ |vn/2+1| ≤ 2k.

Proof. (sketch) The minimal DGA (Q[x] ⊗ Λ(v1, v2, . . . , vn, y), D) with |y| =
2k − 1 is c-symplectic if D(v1) = · · · = D(vn) = 0 and

D(y) = v1vnx
a1 + v2vn−1x

a2 + · · ·+ vn/2vn/2+1x
an/2 + xk

for ai = (2k−|vi|− |vn−i+1|)/2 ≥ 0. Then we have the “if” part from Proposi-
tion 2.1 and [14, Theorem 1.2]. The “only if” part is obvious from [14, Theorem
1.2]. �

Theorem 3.3. Let M = Sa × Sb with a ≤ b.
(i) When a = b, it is projective (k)-Lefschetz for k ≥ b.
(ii) When a and b are even, it is projective ( b2 )-Lefschetz.
(iii) When a and b are odd with a < b, it is projective non-Lefschetz.

Proof. Note that H∗(M ;Q) = Q[v1, v2]/(v
2
1 , v

2
2) = Q(1, v1, v2, v1v2) as a Q-

graded vector space with |1| = 0, |v1| = a, |v2| = b and |v1v2| = a+b. Consider
P (Ek) such that dimP (Ek) = 2m and

D(y) = v1v2x
k− a+b

2 + xk

for k ≥ (a + b)/2. Then m = a+b
2 + k − 1 from 2m = a + b + 2k − 2 and

∪xm−a(v1) = v1x
m−a = v1x

a+b
2

+k−1−a in

∪xm−a : Ha(P (Ek);Q) → H2m−a(P (Ek);Q)

for 0 ≤ a ≤ m. In cohomology, this element has the form v1x
≥k = 0 if and only

if a < b. Thus, when a < b, ∪xm−a(v1) = 0; i.e., ∪xm−a is not the Lefschetz
map. On the other hand, when a = b, we have from (∗∗∗)

∪ xm−2i(xi) = xm−i,

∪ xm−a−2i(v1x
i) = v1x

m−a−i,

∪ xm−b−2i(v2x
i) = v2x

m−b−i,

∪ xm−a−b−2i(v1v2x
i) = v1v2x

m−a−b−i,

whose linear combination can not be zero in cohomology. Thus M is projective
(k)-Lefschetz for k ≥ b when a = b.
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Let a ≤ b be even.Consider P (Ek) such that dimP (Ek) = 2m and

D(y) = v1x
b−a
2 + v2 + x

b
2 . (k =

b

2
)

Then m = a
2 + b− 1 and we have from (∗∗∗)

∪ xm−2i(xi) = xm−i,

∪ xm−a−2i(v1x
i) = v1x

m−a−i =

{

v1v2x
m−a− b

2
−i (i < b−a

2 )

v1x
m−a−i ( b−a

2 ≤ i < −a+2b
4 ),

∪ xm−b−2i(v2x
i) = v2x

m−b−i,

∪ xm−a−b−2i(v1v2x
i) = v1v2x

m−a−b−i,

whose linear combination can not be zero in cohomology; i.e., ∪xj are the
Lefschetz maps. Thus M is projective ( b2 )-Lefschetz. �

Remark 3.4. Even if M is projective (k)-Lefschetz, it is not projective (m)-
Lefschetz for m > k, in general. For example, when M = S4 × S6, M is
projective (3)-Lefschetz from Theorem 3.3 but not projective (4)-Lefschetz.
Indeed, in the proof of Theorem 3.3, ∪x2 : Hm−2(P (E4)) → Hm+2(P (E4)) is
not a monomorphism since ∪x2([v1x+v2+x3]) = [v1x

3+v2x
2+x5] = 0, when

Dy = v1x
2 + v2x+ x4 (m = 8).

Theorem 3.5. Let M = Sa × Sb × Sc with a ≤ b ≤ c. We have the following:
(i) When a, b and c are even, M is projective ( c2 )-Lefschetz.
(ii) When a and c are odd, b is even, M is projective non-Lefschetz.

(iii) When a is even, b and c are odd, M is projective Lefschetz if and only

if b = c. Then M is projective (b)-Lefschetz.
(iv) When a and b are odd, c is even, M is projective Lefschetz if and only

if a = b. Then M is projective (max{a, c
2})-Lefschetz.

Proof. Then dimM = a+ b+ c and H∗(M ;Q) = Λ(v1, v2, v3)/(v
2
1 , v

2
2 , v

2
3) with

|v1| = a, |v2| = b, |v3| = c.
(i) When k = c

2 , dimP (Ek) = a + b + 2c − 2 and m = a+b+2c−2
2 . Then

|y| = c−1 and d(y) = x
c
2 . Let D(y) = v1x

c−a
2 +v2x

c−b
2 +v3+x

c
2 . Then P (Ek)

is c-symplectic by x since [xm] = −[6v1v2v3x
c−2

2 ] 6= 0. Moreover, we have from
(∗∗∗)

∪ xm−2i(xi) = xm−i,

∪ xm−a−2i(v1x
i)=











2v1v2v3x
−a+c−2

2
−i (0 ≤ i < −a+b

2 )

v1v2v3x
−a+c−2

2
−i − v1v3x

−a+b+c−2

2
−i (−a+b

2 ≤ i < −a+c
2 )

−v1v2x
−a+2c−2

2 −i − v1v3x
−a+b+c−2

2 −i (−a+c
2 ≤ i < −a+b+2c

4 ),

∪ xm−b−2i(v2x
i)=











v1v2v3x
−b+c−2

2
−i − v2v3x

a−b+c−2

2
−i (0 ≤ i < −b+c

2 )

−v1v2x
−b+2c−2

2
−i − v2v3x

a−b+c−2

2
−i (−b+c

2 ≤ i < a−b+c
2 )

v2x
a−b+2c−2

2
−i (a−b+c

2 ≤ i < a−b+2c
4 ),
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∪ xm−c−2i(v3x
i) =

{

−v1v3x
b−2

2
−i − v2v3x

a−2

2
−i (0 ≤ i < a+b−2

2 )

v3x
a+b−2

2 (a+b−c
2 ≤ i < a+b

4 ),

∪ xm−(a+b)−2i(v1v2x
i) =

{

−v1v2v3x
−a−b+c−2

2
−i (0 ≤ i < −a−b+c

2 )

v1v2x
−a−b+2c−2

2
−i (−a−b+c

2 ≤ i < −a−b+2c
4 ),

∪ xm−(a+c)−2i(v1v3x
i) = v1v3x

−a+b−2

2
−i (a < b),

whose linear combination can not be zero in cohomology. Thus M is projective
( c2 )-Lefschetz.

(ii) For |y| = 2k−1 andm = a+b+c+2k−2
2 , there are two types of c-symplectic

models as follows:

(1) D(y) = v1v3x
k− a+c

2 + v2x
k− b

2 + xk.

Then ∪xm−a(v1) = −v1v2x
−a+c+2k−2

2 = −v1v2x
≥k = 0 from a < c.

(2) D(y) = v1v2v3x
k− a+b+c

2 + xk.

Then ∪xm−a(v1) = v1x
−a+b+c+2k−2

2 = v1x
≥k = 0. Thus the Lefschetz maps do

not exist in both cases (1) and (2).
(iii) Let b < c. For |y| = 2k − 1 and m = a+b+c+2k−2

2 , there are two types
of c-symplectic models as follows:

(1) D(y) = v1x
k− a

2 + v2v3x
k− b+c

2 + xk.

Then ∪xm−b(v2) = −v1v2x
−b+c+2k−2

2 = −v1v2x
≥k = 0 from b < c.

(2) D(y) = v1v2v3x
k− a+b+c

2 + xk.

Then ∪xm−a(v1) = v1x
−a+b+c+2k−2

2 = v1x
≥k = 0. Thus the Lefschetz maps do

not exist in both cases (1) and (2).
Let b = c. Then M = Sa × Sb × Sb, dimM = a + 2b and H∗(M ;Q) =

Q[v1]/(v
2
1)⊗Λ(v2, v3) with |v1| = a, |v2| = |v3| = b. When k = b, dimP (Ek) =

a + 4b − 2 and m = a+4b−2
2 . Then |y| = 2b − 1 and d(y) = xb. Let D(y) =

v1x
b− a

2 + v2v3 + xb. Then P (Ek) is c-symplectic with respect to x. Moreover,
we have from (∗∗∗)

∪ xm−2i(xi) = xm−i,

∪ xm−a−2i(v1x
i) =

{

−v1v2v3x
−a+2b−2

2
−i (0 ≤ i < −a+2b

2 )

v1x
−a+4b−2

2
−i (−a+2b

2 ≤ i < −a+4b
4 ),

∪ xm−b−2i(v2x
i) =

{

−v1v2x
b−1−i (0 ≤ i < a

2 )

v2x
a+2b−2

2
−i (a2 ≤ i < a+2b

4 ),

∪ xm−b−2i(v3x
i) =

{

−v1v3x
b−1−i (0 ≤ i < a

2 )

v3x
a+2b−2

2
−i (a2 ≤ i < a+2b

4 ),

∪ xm−(a+b)−2i(v1v2x
i) = v1v2x

−a+2b−2

2
−i,
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∪ xm−(a+b)−2i(v1v3x
i) = v1v3x

−a+2b−2

2
−i,

∪ xm−2b−2i(v2v3x
i) = v2v3x

a−2

2
−i,

whose linear combination can not be zero in cohomology. Thus M is projective
(b)-Lefschetz. The proof of (iv) is similar to that of (iii). �

Theorem 3.6. Let M = Sa × Sb × Sc × Sd with a ≤ b ≤ c ≤ d. When a, b, c
and d are odd, M is projective Lefschetz if and only if a = b and c = d. Then

M is projective (c)-Lefschetz.

Proof. Let a < b. For |y| = 2k−1 and m = a+b+c+d+2k−2
2 , there are four types

of c-symplectic models as follows:

(1) D(y) = v1v2x
k− a+b

2 + v3v4x
k− c+d

2 + xk.

Then ∪xm−a(v1) = −v1v3v4x
−a+b+2k−2

2 = −v1v3v4x
≥k = 0.

(2) D(y) = v1v3x
k− a+c

2 + v2v4x
k− b+d

2 + xk.

Then ∪xm−a(v1) = −v1v2v4x
−a+c+2k−2

2 = −v1v2v4x
≥k = 0.

(3) D(y) = v1v4x
k− a+d

2 + v2v3x
k− b+c

2 + xk.

Then ∪xm−a(v1) = −v1v2v3x
−a+d+2k−2

2 = −v1v2v3x
≥k = 0.

(4) D(y) = v1v2v3v4x
k− a+b+c+d

2 + xk.

Then ∪xm−a(v1) = v1x
≥k = 0. Thus, when a < b, M is projective non-

Lefschetz.
Let c < d. For |y| = 2k − 1 and m = a+b+c+d+2k−2

2 , there are four types of
c-symplectic models as follows:

(1) D(y) = v1v2x
k− a+b

2 + v3v4x
k− c+d

2 + xk.

Then ∪xm−c(v3) = −v1v2v3x
−c+d+2k−2

2 = −v1v2v3x
≥k = 0.

(2) D(y) = v1v3x
k− a+c

2 + v2v4x
k− b+d

2 + xk.

Then ∪xm−b(v2) = v1v2v3x
−b+d+2k−2

2 = v1v2v3x
≥k = 0.

(3) D(y) = v1v4x
k− a+d

2 + v2v3x
k− b+c

2 + xk.

Then ∪xm−a(v1) = −v1v2v3x
−a+d+2k−2

2 = −v1v2v3x
≥k = 0.

(4) D(y) = v1v2v3v4x
k− a+b+c+d

2 + xk.

Then ∪xm−a(v1) = v1x
≥k = 0. Thus, when c < d, M is projective non-

Lefschetz.
Let a = b and c = d. Then M = Sa × Sa × Sc × Sc, dimM = 2a+ 2c and

H∗(M ;Q) = Λ(v1, v2, v3, v4) with |v1| = |v2| = a, |v3| = |v4| = c. When k = c,
dimP (Ek) = 2a+4c− 2 and m = a+2c− 1. Then |y| = 2k− 1 and d(y) = xc.
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Let D(y) = v1v2x
c−a + v3v4 + xc. Then P (Ek) is c-symplectic with respect to

x. Moreover, we have from (∗∗∗)

∪ xm−2i(xi) = xm−i,

∪ xm−a−2i(v1x
i) = −v1v3v4x

c−1−i,

∪ xm−a−2i(v2x
i) = −v2v3v4x

c−1−i,

∪ xm−c−2i(v3x
i) =

{

−v1v2v3x
c−1−i (0 ≤ i < a)

v3x
a+c−1−i (a ≤ i < a+c

2 ),

∪ xm−c−2i(v4x
i) =

{

−v1v2v4x
c−1−i (0 ≤ i < a)

v4x
a+c−1−i (a ≤ i < a+c

2 ),

∪ xm−2a−2i(v1v2x
i) =

{

−v1v2v3v4x
−a+c−1−i (0 ≤ i < −a+ c)

v1v2x
−a+2c−1−i (−a+ c ≤ i < −a+2c

2 ),

∪ xm−(a+c)−2i(v1v3x
i) = v1v3x

c−1−i,

∪ xm−(a+c)−2i(v1v4x
i) = v1v4x

c−1−i,

∪ xm−(a+c)−2i(v2v3x
i) = v2v3x

c−1−i,

∪ xm−(a+c)−2i(v2v4x
i) = v2v4x

c−1−i,

∪ xm−2c−2i(v3v4x
i) = v3v4x

a−1−i,

∪ xm−(2a+c)−2i(v1v2v3) = v1v2v3x
−a+c−1−i (a < c),

∪ xm−(2a+c)−2i(v1v2v4) = v1v2v4x
−a+c−1−i (a < c),

whose linear combination can not be zero in cohomology. Thus M is projective
(c)-Lefschetz. �

A nilpotent space is said to be formal if there is a quasi-isomorphism from
its Sullivan minimal model to its rational cohomology algebra thought of as a
DGA with zero differential [15]([5]). For example, compact Kähler manifolds
are formal [4]. Finally we give a non-formal example.

Theorem 3.7. Let M be a simply connected 16-dimensional manifold such

that M(M) = (Λ(v1, v2, v3, v4), d) with |v1| = |v2| = 3, |v3| = |v4| = 5, d(v1) =
d(v2) = 0, d(v3) = v1v2 and d(v4) = 0. Then M is projective non-Lefschetz.

Proof. There are only two cases for which P (Ek) is c-symplectic.
First, let D(y) = v1v4x

i + v2v3x
i + xi+4 with |y| = 7+ 2i. Then

dimP (Ek) = 22 + 2i and m = 11 + i.

Then P (Ek) is c-symplectic from [x11+i] = −[v1v2v3v4x
i+3] 6= 0. But P (Ek)

does not have the Lefschetz property since [v1x
8+i] = [v1(−v1v4x

i− v2v3x
i)x4]

= −[v1v2v3x
i+4] = [v1v2v3(v1v4x

i + v2v3x
i)] = 0.
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Secondly, let D(y) = v1v2v3v4x
i + xi+8 with |y| = 15 + 2i. Then

dimP (Ek) = 30 + 2i and m = 15 + i.

Then P (Ek) is c-symplectic from [x15+i] = −[v1v2v3v4x
i+7] 6= 0. But P (Ek)

does not have the Lefschetz property since [v1x
12+i] = [v1(−v1v2v3v4x

i)x4] =
0. �

Note that the manifold M of Theorem 3.7 is the product of S5 with the
pullback of the sphere bundle of the tangent bundle of S6 by the canonical
degree 1 map S3 × S3 → S6. It is not formal since H∗(M ;Q) contains an
indecomposable element [v1v3] (or [v2v3]), which corresponds to a non-trivial
Massey product 〈v1, v2, v1〉 (or 〈v2, v1, v2〉) [4]. Recall that Y = (S3×S8)♯(S3×
S8)×S5 is formal and has the same rational cohomology as M . From Corollary
2.2, we see that Y is projective non-Lefschetz.

Remark 3.8. We know that S3 × S3 × S5 × S5 is projective (5)-Lefschetz from
Theorem 3.6. It has the same rational homotopy groups as the manifold M of
Theorem 3.7. Thus projective Lefschetzness is not determined by the rational
homotopy groups.
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