• Title/Summary/Keyword: complex impedance

Search Result 280, Processing Time 0.021 seconds

Design of Ferrite Composite Microwave Absorber (복합 Ferrite 전파흡수체의 설계방안)

  • 신재영;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 1994
  • The impedance matching solution map is not a sufficient method for designing the broad-band absorber because of its difficulty to get numerical data about practical band-width. Therefore, we develope a new method to design the broad-band absorber. The complex permeability limits, which is necessary for designing the broad-band absorber in C-X band (4 GHz~12.4 GHz) were investigated and application was also examined. The complex permeability limits represent the frequency dependence of the complex permeability at a practical frequency band. These complex permeability limits can be used effectively to design broad-band single-layered absorber because they offer numerical data about the band-width in the case of various dielectric loss tangent, practical frequency bands and permitted reflection losses of an absorber.

  • PDF

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

The effect of cooling rate on electrical properties of ZnO varistor for Fire Alarm Circuit

  • Lee, Duck-Chool;Kim, Yong-Hyuk;Chu, Soon-Nam
    • Fire Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.3-12
    • /
    • 1996
  • The aim of the present study is to find out the effect of cooling rate on the electrical behavior of ZnO varistors. The microstructure, 1-V characteristics and complex impedance spectra were investigated under the change of cooling rates. It is found that at cooling rate $200^{\circ}$/h, nonlinearity and breakdown voltage reached a maximum value which may show that good intergranular layer is formed as a results of proper cooling rate. Complex Impedance spectras were measured as a function of frequency range 100Hz to 13MHz to determine grain and grainboundary resistance. The semicircles were attributed to the dependence of grain and grainboundary resistance on cooling rates.

  • PDF

A study on the effect of $TiO_2$ to the characterization of PTC thermister (PTC서미스터의 특성에 미치는 $TiO_2$의 영향에 관한 연구)

  • 신태현;김영조;이기택
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.83-89
    • /
    • 1995
  • In this paper, the specimens-($Ba_{0.997}$ L $a_{0.003}$)Ti $O_{3}$ + xTi $O_{2}$, x=0.005, 0.01, 0.02, 0.03[mol]- were fabricated by a solid-state reaction method which is easy in microstructure control and good in mass production. Their crystalline structures and microstructures were analysed, and electrical properties were investigated. The perovskite-crystalline structure is confirmed by XRD, and it is exhibited by SEM that the grain grows with an addition of Ti $O_{2}$. Resistivity decreases with increasing sinteiing temperature, and the specimen of ($Ba_{0.997}$ L $a_{0.003}$)Ti $O_{3}$ + 0.02Ti $O_{2}$ sintered at 1350.deg. C shows the best PTC effects. The complex impedance plots exhibit the serial equivalent circuit of ( $R_{gb}$ / $C_{gb}$ ) and $R_{g}$ it is realized that PTC effect is attributed to the resistivity of grain boundary.ary.y.

  • PDF

A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane (복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화)

  • Kwon O-Sang;Kim Chul-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.7
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

Potential-dependent Complex Capacitance Analysis for Porous Carbon Electrodes (다공성 탄소전극의 전위에 따른 복소캐패시턴스 분석)

  • Jang, Jong H.;Yoon, Song-Hun;Ka, Bok H.;Oh, Seung M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.4
    • /
    • pp.255-260
    • /
    • 2003
  • The complex capacitance analysis was performed in order to examine the potential-dependent EDLC characteristics of porous carbon electrodes. The imaginary capacitance profiles $(C_{im}\;vs.\;log\lf)$ were theoretically derived for a cylindrical pore and further extended to multiple pore systems. Two important electrochemical parameters in EDLC can be estimated from the peak-shaped imaginary capacitance plots: total capacitance from the peak area and $\alpha_0$ from the peak position. Using this method, the variation of capacitance and ion conductivity in pores can be traced as a function of electric potential. The electrochemical impedance spectroscopy was recorded on the mesoporous carbon electrode as a function of electric potential and analyzed by complex capacitance method. The capacitance values obtained from the peak area showed a maximum at 0.3V (vs. SCE), which was in accordance with cyclic voltammetry result. The ionic conductivity in pores calculated from the peak position showed a maximum at 0.2 V (vs. SCE), then decreased with an increase in potential. This behavior seems due to the enhanced electrostatic interaction between ion and surface charge that becomes enriched at more positive potentials.

Electrochemical Impedance Study on the Rebar Corrosion in Cement Mortar Containing Chloride Ions (전기화학적 임피던스법을 이용한 염함유 시멘트 모르터내의 철근부식 연구)

  • Nam, Sang Cheal;Paik, Chi-Hum;Cho, Won Il;Cho, Byung Won;Yun, Kyung Suk;Chun, Hai Soo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.811-816
    • /
    • 1998
  • Rebar corrosion in cement mortar containing chloride ions was investigated by electrochemical AC impedance spectroscopy. Corrosion of mild steel bar was accelerated by an acceleration test equipment in short period. Impedance values obtained from AC-impedance method could be adapted to the proposed electrochemical equivalent circuit model and they were consistent with calculated values obtained by CNLS fitting method. The weight loss of rebar could be calculated by charge transfer resistance($R_2$) with time and it was close to real value.

  • PDF

Impedance Spectroscopy Analysis of the Screen Printed Thick Films (스크린 프린트된 후막의 Impedance Spectroscopy 특성 분석)

  • Ham, Yong-Su;Moon, Sang-Ho;Nam, Song-Min;Lee, Young-Hie;Koh, Jung-Hyuk;Jyoung, Soon-Jong;Kim, Min-Soo;Cho, Kyung-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.477-480
    • /
    • 2010
  • In this study, we fabricate 3 wt% $Li_2CO_3$ doped $(Ba,Sr)TiO_3$ thick films on the Ag/Pd bottom electrode printed $Al_2O_3$ substrates for the LTCCs (low temperature co-fired ceramics) applications. From the X-ray diffraction analysis, 3 wt% $Li_2CO_3$ doped BST thick films on the Ag/Pd printed $Al_2O_3$ substrates, which sintered at $900^{\circ}C$, showed perovskite structure without any pyro phase. The dielectric properties of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 1 kHz to 1 MHz. To investigate the electrical properties of 3 wt% $Li_2CO_3$ doped BST thick films, we employ the impedance spectroscopy. The complex impedance of 3 wt% $Li_2CO_3$ doped BST thick films are measured from 20 Hz to 1 MHz at the various temperatures.

Numerical Calculation for Impedance of Horizontal Ground Electrode for Information and Communication Facilities with Considering Characteristics of Permittivity in Soil (토양의 유전율 특성을 고려한 정보통신설비용 수평접지전극의 임피던스 계산)

  • Ahn, Chang-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.245-251
    • /
    • 2013
  • An impedance of ground electrode for information and communication facilities has a significant relationship with the electrical characteristics of soil where the ground electrode is buried. Especially, the impedance of ground electrode is directly affected by the characteristics of permittivity and conductivity in soil as a function of a frequency of an applied electric field. The program based on the electromagnetic field model was developed in MATLAB. Because both permittivity and conductivity can not be modified in commercial programs. The permittivity of soil was applied with the Debye equation which is a model of dielectric relaxation. And the empirical equation of the conductivity in soil was quoted in other paper. In order to confirm the reliability of proposed program, the impedance measurement of ground electrode was carried out, which were compared with the results of simulation in commercial program. In result, it was confirmed that the impedance and phase different simulated by appling the characteristics of permittivity and conductivity in soil are in good agreement with the measured values than results of NEC.

Design of Single Layer Radar Absorbing Structures(RAS) for Minimizing Radar Cross Section(RCS) Using Impedance Matching (임피던스정합을 이용한 레이더반사면적 최소화 단층형 전파흡수구조 설계)

  • Jang, Byung-Wook;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.118-124
    • /
    • 2015
  • The design of radar absorbing structures(RAS) is a discrete optimization problem and is usually processed by stochastic optimization methods. The calculation of radar cross section(RCS) should be decreased to improve the efficiency of designing RAS. In this paper, an efficient method using impedance matching is studied to design RAS for minimizing RCS. Input impedance of the minimal RCS for the specified wave incident conditions is obtained by interlocking physical optics(PO) and optimizations. Complex permittivity and thickness of RAS are designed to satisfy the calculated input impedance by a discrete optimization. The results reveal that the studied method attains the same results as stochastic optimization which have to conduct numerous RCS analysis. The efficiency of designing RAS can be enhanced by reducing the calculation of RCS.