Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.4
/
pp.64-71
/
2015
In this paper, we present a multi-period 0-1 knapsack problem which has the cardinality constraints. Theoretically, the presented problem can be regarded as an extension of the multi-period 0-1 knapsack problem. In the multi-period 0-1 knapsack problem, there are n jobs to be performed during m periods. Each job has the execution time and its completion gives profit. All the n jobs are partitioned into m periods, and the jobs belong to i-th period may be performed not later than in the i-th period, i = 1, ${\cdots}$, m. The total production time for periods from 1 to i is given by $b_i$ for each i = 1, ${\cdots}$, m, and the objective is to maximize the total profit. In the extended problem, we can select a specified number of jobs from each of periods associated with the corresponding cardinality constraints. As the extended problem is NP-hard, the branch and bound method is preferable to solve it, and therefore it is important to have efficient procedures for solving its linear programming relaxed problem. So we intensively explore the LP relaxed problem and suggest a polynomial time algorithm. We first decompose the LP relaxed problem into m subproblems associated with each cardinality constraints. Then we identify some new properties based on the parametric analysis. Finally by exploiting the special structure of the LP relaxed problem, we develop an efficient algorithm for the LP relaxed problem. The developed algorithm has a worst case computational complexity of order max[$O(n^2logn)$, $O(mn^2)$] where m is the number of periods and n is the total number of jobs. We illustrate a numerical example.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.3
/
pp.976-995
/
2016
Workflow scheduling is one of the challenging problems in cloud computing, especially when service reliability is considered. To improve cloud service reliability, fault tolerance techniques such as fault recovery can be employed. Practically, fault recovery has impact on the performance of workflow scheduling. Such impact deserves detailed research. Only few research works on workflow scheduling consider fault recovery and its impact. In this paper, we investigate the problem of workflow scheduling in clouds, considering the probability that cloud resources may fail during execution. We formulate this problem as a multi-objective optimization model. The first optimization objective is to minimize the overall completion time and the second one is to minimize the overall execution cost. Based on the proposed optimization model, we develop a heuristic-based algorithm called Min-min based time and cost tradeoff (MTCT). We perform extensive simulations with four different real world scientific workflows to verify the validity of the proposed model and evaluate the performance of our algorithm. The results show that, as expected, fault recovery has significant impact on the two performance criteria, and the proposed MTCT algorithm is useful for real life workflow scheduling when both of the two optimization objectives are considered.
For battery based real-time embedded systems, high performance to meet their real-time constraints and energy efficiency to extend battery life are both essential. Real-Time Dynamic Voltage Scaling (RT-DVS) has been a key technique to satisfy both requirements. In this paper, we present an efficient RT-DVS algorithm called EccEDF that is designed based on ccEDF. The proposed algorithm can precisely calculate the maximum unused utilization with consideration of the elapsed time while keeping the structural simplicity of ccEDF, which overlooked the time needed to run the task in calculating the available slack. The maximum unused utilization can be calculated by dividing remaining execution time($C_i-cc_i$) by remaining time($P_i-E_i$) on completion of the task and it is proved using Fluid scheduling model. We also show that the algorithm outperforms ccEDF in practical applications which is modelled using a PXA250 and a 0.28V-to-1.2V wide-operating-range IA-32 processor model.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.2
/
pp.185-190
/
2006
Most systems in ubiquitous computing analyze context information of users which have similar propensity with demographics methods and collaborative filtering to provide personalized recommendation services. The systems have mostly used static context information such as sex, age, job, and purchase history. However the systems have limitation to analyze users' propensity accurately and to provide personalized recommendation services in real-time, because they have difficulty in considering users situation as moving path. In this paper we use users' moving path of dynamic context to consider users situation. For the prediction accuracy we complete with a path completion algorithm to moving path which is inputted to RSOM. We train the moving path to be completed by RSOM, analyze users' moving pattern and predict a future moving path. Then we recommend the nearest product on the prediction path with users' high preference in real-time. As the experimental result, MAE is lower than 0.5 averagely and we confirmed our method can predict users moving path correctly.
Kim, Byungsang;Youn, Chan-Hyun;Park, Yong-Sung;Lee, Yonggyu;Choi, Wan
Journal of Information Processing Systems
/
v.8
no.4
/
pp.555-566
/
2012
The cloud environment makes it possible to analyze large data sets in a scalable computing infrastructure. In the bioinformatics field, the applications are composed of the complex workflow tasks, which require huge data storage as well as a computing-intensive parallel workload. Many approaches have been introduced in distributed solutions. However, they focus on static resource provisioning with a batch-processing scheme in a local computing farm and data storage. In the case of a large-scale workflow system, it is inevitable and valuable to outsource the entire or a part of their tasks to public clouds for reducing resource costs. The problems, however, occurred at the transfer time for huge dataset as well as there being an unbalanced completion time of different problem sizes. In this paper, we propose an adaptive resource-provisioning scheme that includes run-time data distribution and collection services for hiding the data transfer time. The proposed adaptive resource-provisioning scheme optimizes the allocation ratio of computing elements to the different datasets in order to minimize the total makespan under resource constraints. We conducted the experiments with a well-known sequence alignment algorithm and the results showed that the proposed scheme is efficient for the cloud environment.
International Journal of Computer Science & Network Security
/
v.22
no.2
/
pp.357-361
/
2022
Employing the available technologies and utilizing the advanced means to improve the level of health care provided to citizens in their various locations. Citizens have the right to get a proper health care services despite the location of their residency or the distance from the health care delivery centers, a goal that can be achieved by utilizing air ambulance systems. In such systems, aircrafts and their life spans are the essential component, the flight duration of the aircraft during its life span is determined by the maintenance schedule. This research, enhances the air ambulance systems by presenting a proposal that maximizes the aircraft flight duration during its life span. The enhancement will be reached by developing a set of algorithms that handles the aircraft maintenance problem. The objective of these algorithms is to minimize the maximum completion time of all maintenance tasks, thus increasing the aircraft operation time. Practical experiments performed to these algorithms showed the ability of these algorithms to achieve the desired goal. The developed algorithms will manage the maintenance scheduling problem to maximize the uptime of the air ambulance which can be achieved by maximizing the minimum life of spare parts. The developed algorithms showed good performance measures during experimental tests. The 3LSL algorithm showed a higher performance compared to other algorithms during all performed experiments.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.9
/
pp.4103-4121
/
2018
Quality of Service (QoS) awareness is recognized as a key point for the success of Internet of Things (IOT).Realizing the full potential of the Internet of Things requires, a real-time task scheduling algorithm must be designed to meet the QoS need. In order to schedule tasks with diverse QoS requirements in cloud environment efficiently, we propose a task scheduling strategy based on dynamic priority and load balancing (DPLB) in this paper. The dynamic priority consisted of task value density and the urgency of the task execution, the priority is increased over time to insure that each task can be implemented in time. The scheduling decision variable is composed of time attractiveness considered earliest completion time (ECT) and load brightness considered load status information which by obtain from each virtual machine by topic-based publish/subscribe mechanism. Then sorting tasks by priority and first schedule the task with highest priority to the virtual machine in feasible VMs group which satisfy the QoS requirements of task with maximal. Finally, after this patch tasks are scheduled over, the task migration manager will start work to reduce the load balancing degree.The experimental results show that, compared with the Min-Min, Max-Min, WRR, GAs, and HBB-LB algorithm, the DPLB is more effective, it reduces the Makespan, balances the load of VMs, augments the success completed ratio of tasks before deadline and raises the profit of cloud service per second.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.41
no.3
/
pp.11-16
/
2004
Recently, collaborative works are increased more and more over the distributed heterogeneous computing environments. The availability of high-speed wide-area networks has also enabled collaborative multimedia applications such as video conferencing, distributed interactive simulation and collaborative visualization. Distributed high performance computing and collaborative multimedia applications, it is extremely important to efficiently perform group communication over a heterogeneous network. Typical group communication patterns are broadcast and Multicast. Heuristic algorithms such as FEF, ECEF, look-ahead make up the message transmission tree for the broadcast and multicast over the distributed heterogeneous systems. But, there are some shortcomings because these select the optimal solution at each step, it may not be reached to the global optimum In this paper, we propose a new heuristic algerian that constructs tree for efficiently collective communication over the previous heterogeneous communication model which has heterogenity in both node and network. The previous heuristic algorithms my result in a locally optimal solution, so we present more reasonable and available criterion for choosing edge. Through the performance evaluation over the various communication cost, improved heuristic algorithm we proposed have less completion time than previous algorithms have, especially less time complexity than look-ahead approach.
This paper considers a scheduling of a set of jobs on single and multiple processors, when all jobs have a common due date and earliness and lateness are penalized at different cost rates. The objective is to determine the optimal value of a common due date and an optimal scheduling to minimize a total penalty function. It is also shown that a schedule having minimum weighted completion time variances must be V-shaped. For identical processors, a polynomial scheduling algorithm with the secondary objectives of minimizing makespan and machine occupancy is developed and a numerical example is presented.
Journal of Korean Society of Industrial and Systems Engineering
/
v.33
no.4
/
pp.45-57
/
2010
This paper considers a 2-stage assembly flowshop scheduling problem where each job is completed by assembling multiple components. The problem has the objective measure of minimizing total completion time. The problem is shown to be NP-complete in the strong sense. Thus, we derive some solution properties and propose three heuristic algorithms. Also, a mixed-integer programming model is developed and used to generate a lower bound for evaluating the performance of proposed heuristics. Numerical experiments demonstrate that the proposed heuristics are superior over those of previous research.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.