
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, Sep. 2018 4103
Copyright ⓒ 2018 KSII

An open Scheduling Framework for QoS
resource management in the Internet of

Things

Weipeng Jing , Qiucheng Miao and Guangsheng Chen
Department of Computer science and technology, Northeast Forestry University

Harbin, P.R.China
[e-mail: weipeng.jing@outlook.com]
*Corresponding author: Weipeng Jing

Received April 1, 2017; revised February 6, 2018; accepted March 19, 2018;

published September 30, 2018

Abstract

Quality of Service (QoS) awareness is recognized as a key point for the success of Internet of
Things (IOT).Realizing the full potential of the Internet of Things requires, a real-time task
scheduling algorithm must be designed to meet the QoS need. In order to schedule tasks with
diverse QoS requirements in cloud environment efficiently, we propose a task scheduling
strategy based on dynamic priority and load balancing (DPLB) in this paper. The dynamic
priority consisted of task value density and the urgency of the task execution, the priority is
increased over time to insure that each task can be implemented in time. The scheduling
decision variable is composed of time attractiveness considered earliest completion time
(ECT) and load brightness considered load status information which by obtain from each
virtual machine by topic-based publish/subscribe mechanism. Then sorting tasks by priority
and first schedule the task with highest priority to the virtual machine in feasible VMs group
which satisfy the QoS requirements of task with maximal. Finally, after this patch tasks are
scheduled over, the task migration manager will start work to reduce the load balancing
degree.The experimental results show that, compared with the Min-Min, Max-Min, WRR,
GAs, and HBB-LB algorithm, the DPLB is more effective, it reduces the Makespan, balances
the load of VMs, augments the success completed ratio of tasks before deadline and raises the
profit of cloud service per second.

Keywords: QoS; Internet of Things; dynamic priority; load balancing; scheduling

This research was supported by Special Fund for Forest Scientific Research in the Public Welfare(201504307)

http://doi.org/10.3837/tiis.2018.09.001 ISSN : 1976-7277

4104 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

1. Introduction

Full intelligentialize would be the ultimate goal of the Internet of Things. According to the
forecasting application of the Internet of Things (IoT) made by [1], everyday devices will be
connected to the Internet and share information with each other. Consequently new challenges
arise in order to guarantee the effectiveness and the efficiency of the data processing, Cloud
computing platform must be deployed at multiple scales and real time over various devices or
servers, spread across IoT. this implies that it must establish a kind of “QoS-based contract”
between IoT and cloud computing platform. Nevertheless, handling QoS requirements and
load balancing for cloud computing platform is still essential.

Cloud computing is an internet-based computing services model which evolved from grid
computing, distributed computing, parallel computing, virtualization and other technologies, it
integrates enormous computing resources, storage resources and software resources via
network to constitute some shared virtual resource pools, then various applications and files
can be hosted on the cloud to enjoy the low-cost service which follows a “pay as you use”
model. Using the cloud service, the customers are freed from massive software and hardware
investment, they need not care for the upgrade of software and hardware, they just need pay
money for the duration they has used the resource which they applied previously. The usual
services that are provided by cloud computing can be classified into three levels:
infrastructure-as-a-service(IaaS), platform-as-a-service(PaaS) and software-as-a-service
(SaaS)[2]. So in the IoT application, the Cloud computing must provide high quality QoS. The
completion time of all tasks and execution cost are two major factors of quality of
service(QoS) which are interested by IoT devices. Then the cloud center should do it best to
provide an high-speed and cheap service to satisfy various QoS requirement tasks.[4]

With the continuous exploration and research on cloud computing, it gradually shifts
from "computer" as the center to "user" as the center. Due to the commercialization of cloud
computing, it needs to pay more attention to the different needs of user tasks, that is to give
priority to various QoS requirements of user tasks, such as completing the requirements of
time, cost, energy consumption and reliability, and then concerned about the computer
performance and response time. Therefore, using "user" as the center of resource allocation to
improve user satisfaction and the utility value of user tasks, as the goal of resource allocation,
is very suitable for solving the problem of theater allocation in cloud environment.

Task scheduling algorithm is the key to satisfy the data processing in IoT. Task
scheduling algorithm in the scheduler is in charge of distributing tasks to suitable virtual
machines(VMs) which are the processing units in the cloud. Scheduling of tasks in cloud
computing is an NP-hard optimization problem. Scheduling algorithms are used mainly to
minimize execution time and execution cost. A good scheduling algorithm should do it best to
satisfy the users’ QoS requirement and utilize the available resources fully, so it should give
the feasible priority to tasks and avoid load imbalance especially for the IoT data processing.
The DPLB algorithm can effectively reduce the total task completion time and balancing the
VMs’load, and it also can archive a better success completion ratio and service profit per
second in different task sets.

Priority based Task scheduling is one of the hot research point in cloud computing.
Ghanbari et al. schedule priority based job by AHP method.[3] Gu et al. schedule priority
based task on the Hadoop platform.[25] Traditional Min-Min or Max-Min scheduling

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4105

algorithm equal to give the smallest or largest task lowest priority or higher priority. Although
the above algorithm reduce the overall task completion time, but did not consider the influence
of value and deadline on priority, and Min-Min algorithm also prone to load imbalance. To
avoid large task to be executed over a long time, G et al. draw dynamic priority into Min-Min
algorithm, task priority increases with the waiting time.[5] In order to avoid task priority
increases infinitely, literature[6] group tasks by priority, the tasks in the same group have the
same priority, then first schedule the task with minimum deadline in the highest priority group.
Although these two task scheduling algorithms increase the utilization ratio of resources, them
still lack in considering the impact of execution cost on priority. Considering the residual
value density of task and the urgency of the task execution, a real-time tasks scheduling
algorithm based on dynamic priority in stand-alone environment was proposed in [7], but the
algorithm is not available for distributed cloud environments.

Considering effective task scheduling algorithms should be able to balance the VM load
in order to reduce the earliest completion time of all tasks.

The load balancing methods can be classified into dynamic load balancing methods and
static load balancing methods. In the aspect of dynamic load balancing, the authors in [8]
achieves load balancing on physical machine by VM migration.The authors in [9] achieves the
dynamic load balancing on VM resources by exponential smoothing forecasting method. The
authors in [10] achieves it by genetic algorithm based on the record of historical data and
current state information on VMs. A dynamic load balancing algorithm HBB-LB was
proposed in [11], in HBB-LB tasks on overloaded VMs are bees and the low loaded VMs are
the food sources, imitates the foraging food behavior of honey bees, it implements tasks on
overloaded VMs migration and achieve load balancing. A load balancing method which use
Genetic algorithm to achieve task migration was proposed in [13], and literature achieve task
migration by particle swarm optimization algorithm. The above dynamic load balancing
strategies can balance the load of VMs, but the realizations are complex, and will increase the
time-cost in tasks migration. In the aspect of static load balancing. In[14,19], the authors
achieves load balancing by the ant colony algorithm. In [15], adds load constraint on the
Max-Min algorithm. The authors in [16] first gets result of Min-Min algorithm, then adjusts
the shortest tasks on overloaded VMs to other VMs which can reduce the ECT, finally
schedules tasks to VMs. The realizations of above static load balancing algorithms are simpler
relatively, but they are just fit for no wrong tasks set and steady cloud environment.

Considering the impact of value and deadline on task priority, and balancing the VMs
load, this paper proposes a task scheduling strategy based on dynamic priority and Load
Balancing (DPLB) in cloud environment. Dynamic priorities consist of task value density and
the urgency of task execution, and over time, priorities increase to ensure that each task is
executed in time.The scheduling decision variable ρ is composed of attractiveness considered
earliest completion time (ECT) and load brightness considered load status information which
by obtain from each VM by topic-based publish subscribe mechanism. Then sorting tasks by
priority and first schedule the task with highest priority to the VM in feasible VMs group
which satisfy the QoS requirements of task with maximal ρ . And this paper conducts a
comparison among the Min-Min, Max-Min, WRR, GAs, and HBB-LB algorithm in the
completion time of all tasks, load balancing degree, success completed ratio and service profit
per second.

The main contributions of this paper are as follows: Proposing an new priority structure
which considering the task value density and the urgency of the task execution, and proposing
an new scheduling decision variable, which considers both ECT and VMs load. Using
topic-based publish/subscribe mechanism to get VMs load status information for making

4106 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

scheduling decision more accurate and designing a task migration manager to balance load
further.

The remainder of this paper is organized as follows: Section 2 introduce the related model
of DPLB algorithm. Section 3 describes DPLB algorithm including the cloud structure, some
management strategies and the detail description of DPLB algorithm. Section 4 shows the
experimental results and analysis. Finally, the conclusion is presented in Section 5.

2. Model

2.1 Task scheduling model
In this paper, we just consider the case of n uncorrelated independent subtasks scheduling,

these tasks will be assigned to m VMs for performing ()m n< .The set of n tasks is represented
by 1 2() { , ,..., }nT n t t t= n N∈ , which it (i 1, 2, , n)= … is the No. i task in the set, and the attributes

of every task is represented by (, , , , , ,)i i i i i i i
i id mi file fee deadline memory submitt t t t t t t t= , where: i

idt is the unique

identification number of it . i
mit is the size of it , namely the number of million instructions

(MI).
i
filet is the program file size of it .

i
feet is the user’ desired fee of it , user gives it based

on the task’ QoS requirements. i
deadlinet is the user desired deadline for it . i

memoryt is the memory

requirement of it . i
submitt is the submission time of it .

The set of m virtual machine resources is represented by 1 2() { , ,..., }()mVM m vm vm vm m N= ∈ ,

which jvm (1, 2, ,)j m= … is the No. j virtual machine in the set, and the attributes of every

VM is measured as capacity(, , ,)j j j j
j id vm memoryvm vm vm B vm= , where: j

idvm is the unique identification

number of VM in the data center. j
capacityvm is the processing capacity of VM, namely

processing capacity for million instructions per second(MIPS). { | 1,..., }j
jkB b k m= = is

bandwidth between jvm with other VMs.
j

memoryvm is the memory size of VM.
There are some important identification in task scheduling field as follows:
(1) Expected Execution Time(ETC): ijETC is the expected execution time of it on

jvm ,then it can be expressed as Eq.(1):

i
mi

ij j
capacity

tETC
vm

=
 (1)

(2) Earliest Completion Time(ECT): jbe is the start time of it on jvm , ijECT is the

earliest completion time of it on jvm , then it can be denoted as Eq.(2):

 ij j ijECT be ETC= + (2)
 (3) The objective function and constraints: Makespan is the completion time of all tasks,

it can be expressed as Eq.(3):

 max{ }ijMakespan ECT= (3)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4107

Minimizing the Makespan is the major purpose for most task scheduling algorithms, and
it also keep some aspects of QoS requirements, then it can be expressed as Eq.(4):

min{ }
(1,2,...,)

(1, 2,...)

i j
memory memory

i
deadline ij

Makespan
t vm i n

t ECT j m

 ≤ =

≤ =

(4)

2.2. Dynamic priority model

The priority of task reflects the importance of the task, it should be take into account the
fairness and efficiency to satisfy the QoS requirements of users, such as the cost of execution,
the deadline of task etc. To achieve the purpose, this paper proposes a dynamic priority which
considering the task value density and the urgency of the task execution.

(1) Task Value Density (TVD)

i
fee

i i
mi

t
TVD

t
= (5)

Due to the value of task can not reflect the real value of the task, it must consider the size
of task simultaneously, so we define the TVD by the ratio of the user desired fee to the task
size as Eq. (5) .

(2) The Urgency of Task Execution (UTE)

 1

i
wait

i i
left

tUTE
t

=
+ (6)

In Eq.(6), where i
waitt is the waiting time of task, let currentt is the current time,

i
leftt is the

left time, then i
waitt can be expressed as mi

i i
wait current sub tt t t= − . Obviously with the increasing

waiting time, the left time will decrease accordingly, then the UTE will increase rapidly, so it
will satisfy the time constraints of tasks, the successful completion rate of tasks completed
before the deadline reflects the priority dynamic characteristics.

(3) The Dynamic Priority of Task
In order to build dynamic priority, we need to normalize the iTVD and iUTE . In this paper,

the Z-score method which based on the mean of the original data and standard deviation is
used in data normalization. Let ikst denotes the normalization result of the No. k priority

factor of it , we get the Eq.(7):

 () /ik ik k kst z z δ= − (7)

Where (1,2)k = , ikz is the element in 2n× order matrix Z which is denoted as
{ }Z TVD UTE= , kz is the average of No. k column of matrix Z which is calculated by

4108 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

1

1 n

k ik
i

z z
n =

= ∑ , kδ is the standard deviation of No. k priority factor which is calculated by

1

1 ()
n

k ik k
i

z z
n

δ
=

= −∑ .

Let ()iDP t denote the dynamic priority of it , then it can be defined by Eq.(8):

 1 1 2 2()i i iDP t st stω ω= × + × (8)
Where 1 2, [0,1]ω ω ∈ , they are the weighting factors , and they satisfy the equation 1 2 1ω ω+ = .

2.3. Mapped decision variable model

Tasks and the virtual machines is a mutual attraction process in tasks scheduling. In this

process,we design two factors which consider ECT and the load status of VMs to schedule
tasks.

(1) Time Attractiveness (TA)
The reciprocal of earliest expected completion time, it will be decreasing with the ECT

reducing, the ECT is not zero, then it can be denoted as Eq. (9) :

1
ij

ij

TA
ECT

= (9)

(2) Load Intensity(LI)
The reciprocal of VM load expect processing time(jEPT), let jL is the load on jvm , then

we can get j
j j

capacity

L
EPT

vm
= , to avoid the processing time becoming zero, we let the jEPT plus

one as the denominator, then it can be denoted as Eq.(10):

1
1j

j

LI
EPT

=
+ (10)

In the initial moment, the jEPT is zero, the value of LI is one, it is the maximum. With the
increasing of load, the LI will decrease.

(3) Mapped decision variable (ijρ)
Considering the TA and LI, we give the mapped decision variable as Eq.(11).

 ij ij jTA LIρ = × (11)

Obviously the ijρ will increase with the increasing of TA and LI, namely the load of jvm

is lower with the reduction of ECT, the ijρ will more bigger. Finally, the task scheduler

schedules the task to the available VM which can archive the biggest value of ijρ .

3. DPLB algorithm

3.1. Task scheduling cloud structure

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4109

Fig. 1. The architecture of task scheduling model in cloud

Fig. 1 shows the task scheduling cloud architecture, it consists of physical layer, visualization
layer, task scheduling layer and cloud client interface. The physical layer is comprised of
massive different hardware resources, the same type of hardware resources constitute a
resource pool such as computing resource pool, network resource pool and storage resource
pool which providing basic facility services for virtualization layer. The virtualization layer is
comprised of VMs cluster and VMs management modules. The virtual machine cluster
includes massive VMs and VM agents, VM agent is an execution program which is deployed
on every virtual machine to acquire the load status information of VMs periodically. VMs
Management modules include image library component, image management component,
VMs management component, VMs creator component and VMs load status information
collector component, they function as follow Table 1.

Table 1. The component function of VMs management modules

Components function
VMs Image Library Storing and managing VMs

image VMs Image Management
VMs Management Creating VM instances and

managing their whole lifecycle VMs Creator

Load Information Management

Collecting and analyzing the
information submitted by
monitoring agents

4110 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

The task scheduling layer consists of initialization module, distribution results, dynamic
priority manager, load information management and task migration manager and task
scheduler.[21] The initialization module is responsible for sending task to the task queue in
data center which can satisfy the task QoS requirements such as the memory requirement,
capability requirement etc and has the local data that calculation required. The component of
task priority initialization receives tasks from scheduling window in task queue, and calculates
every task priority, and sorted the tasks by priority. The component of mapped decision and
mapped results maps the tasks to the appropriate VM by decision variable, then records the
mapped results between task and VM, and marks which task has been completed. The
dynamic priority manager takes charge of sorting the tasks in VM’s task queue by tasks
priority. The task scheduler is responsible for sending the task to the virtual machine for
execution. Load information management and task migration manager is responsible for
checking the load information changes on the VMs, and motivating the task migration. The
cloud client is the place where consumers submit their tasks and get the computing results.

3.2. management strategies

3.2.1. Task Queue management strategy
Sliding window

Queue head

Fig. 2. The task queue management strategy diagram

In this paper, we organize tasks queue in initialization module into a circle, and set a sliding
window on it, what looks like as Fig. 2. The tasks in sliding window will be scheduled
immediately, the number of tasks in sliding window is set by the threshold. When the tasks
scheduling in the sliding window is finished, the sliding window will slide down the task
queue, and the queue head and queue rear will change correspondingly, the queue head
position is on the sliding window head, the queue rear position is adjacent to the queue head
but don’t in the sliding window. Therefore, the increasing tasks submitted by the consumers
will be scheduled rapidly through this task queue management strategy.

3.2.2. Dynamic priority manager strategy
Because of the priority tasks included in the time urgency factor, so the priority is growing
along with the growth of time, task dynamic priority manager is responsible for task priority
maintenance, specific maintenance strategies are as follows:

(1) Sorting tasks in VM’s task queue by task priority.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4111

(2) Maintaining task priority, when the task remaining time is zero, the task is
recalculated value halved task priority, it will be marked and insert the ordered task queue
task.

3.2.3. Load information management and task migration strategy

Load information
manager(master)

agent(VM1)

...

agent(VMm)

agent(VM2)

Topic Name subscriber

VM1 master
VM2 master

... ...

Topic Board
(Load status Information Collector)

filter
revise

push

VMm master

Produce
topic

Task migration
manager

Fig. 3. VMs’ load information management strategy diagram

The accuracy of load information that collected from VMs directly determines the quality of
scheduling algorithm, while in the actual environment, it will meet some emergencies such as
task should be re-executed because of program error occurs, VM server goes down etc.[23]
that could lead to the VMs’ load information change, therefore need a good load information
collection mechanism to ensure the load information. In this paper, we use the distributed
publish-subscribe messaging mechanism to achieve accurate load information from VMs. The
block diagram of load information management strategy looks as Fig. 3.

The agents on VMs monitor the VMs ’ status and transmit topic messages which
containing load status information flow to the topic board (namely the load status information
collector) periodically.[21] The topic board is responsible for topic collecting and check the
load information change, if the load reduction does not matches the corresponding VM’s
process performance in the period, it means some emergency happens on that VM, the
corresponding topic message will be pushed to the subscriber who subscribe this topic. To
avoid the master node cost too much source in management, the topic board is set on one of the
VMs. The load information management and task migration manager in scheduling layer just
need subscribe the topics on the topic board, and then check the message receiving queue
periodically, if receive the topic message then update the load status information on the VM
which matching the topic name.

After this patch of tasks are scheduled over, or some events that cause tasks to be
recomputed occur on VMs and lead to the VM over the threshold (namely the VM is marked
as over load VM), the task migration manager will start work, it will choose the tasks from the
rear of task queue, and find the light load VM which can satisfy the requirement of task, and if
the task is scheduled to the light load VM or exchanged with the task in the light VM can
reduce the load and do not augment the Makespan, then schedules it to the light load VM. Its
diagram shows as Fig. 4.

4112 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

vm a

Task
a1

Task
a2

…
…

Task
aA

vm b

Task
b1

Task
b2

…
…

Task
bB

vm M

Task
m1

Task
m2

…
…

Task
mM

vm c

Task
c1

Task
c2

…
…

Task
cC

vm d

Task
d1

Task
d2

…
…

Task
dD

vm 1

Task
11

Task
12

…
…

Task
1u

vm e

Task
e1

Task
e2

…
…

Task
eE

… … … … …

Task migration

rear

front

over load VM light load VM

Task migration

Fig. 4. Task migration strategy diagram

3.3. DPLB algorithm description
After submitting the task to the data center which can satisfy the task’ QoS requirement and
conform data locality, the task arrives at the task queue,[20] the DPLB algorithm will work as
the following steps:

We first calculate the priority of all the tasks in the sliding window, prioritize the tasks,
and sort the virtual machine resources by capacity. Then schedule the tasks in sliding window
in order of priority, for every task, calculate its ECT on every VMs, and according to task’s
memory and capability(namely deadline) requirements i j

memory memoryt vm≤ and i
ij deadlineECT t≤ , find

task’ available VMs group. Then check whether receive new load information topic messages
which are pushed from topic board, updating the load information if have received and
calculate the mapped decision variable ijρ between task and its available VMs. Then schedule

the task to the VM which get the maximum value of the mapped decision variable ijρ , and

update this VM’s starting execution time jbe and load intensity jLI . As above operation,
schedule next task in sorted sliding window, until completed the last task scheduling, empty
the sliding window and slide down the window, start a new round of tasks scheduling as above.
A round of the algorithm process is as follows:

Algorithm DPLB algorithm
1: Notations： Let iCT denote the available VMs group of it ,
2: Procedure:Init()
3: for(int j=0;j<m;j++)

4:
0jbe = , 1jLI = ; // Initialization start execution time, LI

5: subscribe topics & set sliding window size;
6: Procedure:DP(it) // compute tasks’ dynamic priority
7: for it in T do
8: set ()iDP t based on Eq.(9)；
9: end for
10:Procedure: Sort(T,VM) // sort tasks and VMs
11:Sort T by ()iDP t in descending order;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4113

12:Sort VM by j
capacityvm in descending order;

13:Procedure: GetETC() // calculate ijETC
14:for it in sorted T do
15: for jvm in sorted VM do
16: set ijETC based on Eq.(1);
18: end for
19:end for
20:Procedure: Schedule()
21:check topic messages & update load information;
22:for it in sorted T
23: if(0i

leftt ≤)

24: compute ()iDP t with half i
feet and insert it to sorted T ;

25: if (position of it in T changed) then
26: continue;
27:for jvm in sorted VM // calculate ijECT and iCT
28: set ijECT based on Eq.(2);
29: if（ i

ij deadlineECT t≤ && i j
memory memoryt vm≤ ）

30: i jCT vm← ;

31:for jvm in iCT // Calculate ijρ ，Start scheduling
32: set ijρ based on Eq.(12)；
33: assign it to the vm in iCT with the max{ }ijρ ;
34: update jbe and jLI ;
35:Procedure: migration() // task migration
36:Find overload VMs and light load VMs;
37:for jvm in overload VMs
38: for it in the 'jvm rear of task queue
39: for kvm in light load VMs
40: if(() & &jk i i

migration ik k jtime ECT Makespan lbd lbd+ <= <)

41: i kt vm− − > ;
42: for ut in the 'kvm rear of task queue
43: if(u i

size sizet t< && ()jk
migration iktime ECT Makespan+ <=

44: && i i
k jlbd lbd< && u u

j klbd lbd<)

45: i kt vm− − > , u jt vm− − > ;
46:End

4114 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

4 Experimental Analysis

4.1. Experimental environment

To validate the effectiveness of DPLB proposed in this paper, we made the simulation
experiment based on the CloudSim[17] platform. We schedule 50 − 450 independent tasks to
20 VMs on CloudSim, each virtual machine possesses one CPU, the processing capability of
CPU in the range of 500−1000 (MIPS) , the memory capability in the range of 1000 − 2000
(MB) , the matching method between virtual machine and physical host is supported by
Time-Shared algorithm. The size of tasks in the range of 10000−50000 (MI) , the file size of
tasks in the range of 30−50MB, the memory requirement of tasks in the range of 800 − 1800

(MB) , the deadline requirement of tasks in the range of 50−1200 (s) ,the bandwidth between

VMs in the range of 8−10, the priority weighting factor in Eq. (9) is set as 1 2 0.5ω ω= = .The
CloudSim platform running on a personal computer with CPU of AMD X2215 2.7GHz and
memory of 2GB.

4.2. Assessment Indicators

In order to evaluate the performance of DPLB, four assessment indicators are defined in the
experiments as follows:

Makespan: the completion time of all tasks
It is defined as Eq.(3), its value more smaller, the performance more better.

 Load balancing degree: measure the degree of VMs cluster about load balancing
 We can know the definition of EPT from Eq.(11), then the average expect processing

time of all tasks on VMs can be denoted as
1

1 m

j
j

EPT EPT
m =

= ∑ . In this paper, we use the standard

deviation of expected processing time to express the load balancing degree, then it can be
denoted as Eq.(12), its value more smaller, the performance more better.

2

1

1 ()
m

j
j

EPT EPT
m

σ
=

= −∑ (12)

 Success completion ratio: reflect the number of timely completion tasks
 Let sn is the number of tasks which are completed before the deadline, n is the number

of all tasks, then the success ratio can be denoted as Eq.(13), its value more bigger, the
performance more better.

 /sSC n n= (13)
Service profit per second: evaluate the profit per second

We assume that the number of tasks which are completed before the deadline is k, and half the
profit of tasks which are not timely completion, then the service profit per second can be
denoted as Eq.(14), its value more bigger, the performance more better.

 1

1() /
2

k n
i i
fee fee

i i k
SP t t Makespan

= =

= +∑ ∑ (14)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4115

4.3. results and analysis

Under the same experimental condition and environment, we implement the Min-Min
algorithm, Max-Min algorithm, WRR algorithm, GAs algorithm, HBB-LB algorithm and
DPLB algorithm in the CloudSim platform, and compare their performance in four indicators
which are defined in section 4.2. In this paper, we design two type tasks sets to validate the
performance of DPLB, there are smooth tasks sets which task can be completed one-time and
recompleted tasks sets which some of the tasks need to be recomputed.

Part I Experiments with smooth tasks set, and Comparing Min-Min algorithm,
Max-Min algorithm, WRR[18] algorithm, GAs[12] algorithm, HBB-LB[11] algorithm and
DPLB algorithm.

Experiment 1 Makespan Comparison
Fig. 5 shows the comparison result of six algorithms on Makespan with different number

of tasks, the X-axis represents number of tasks and the Y-axis represents the Makespan. From
the Fig. 5, we can see that DPLB algorithm keeps a lower value, it is more fit to a large number
of tasks, it becomes the lowest since 150 tasks, it is obvious better than the Min-Min algorithm
and WRR algorithm which are prone to load imbalance, and it also better than Max-Min, GAs
algorithm and HBB-LB algorithm, it proves that the DPLB algorithm can effectively reduce
the overall task completion time.

Fig. 5. Comparison of Makespan

Fig. 6. Comparison of load balancing degree

4116 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

Experiment 2 Load balancing degree comparison
Fig. 6 shows the comparison of load balancing degree, the X-axis represents number of

tasks and the Y-axis represents the load balancing degree. From the Fig. 6, we can see that the
DPLB algorithm keeps a lower value, it becomes the lowest since 150 tasks, it proves that the
DPLB algorithm has a good load balancing characteristics. From the experiment, we also get
the comparing of migration tasks’ number as Table 2, and load balancing degree change of
DPLB algorithm before and after running tasks immigration as Table 3, from them we can see
that the migration tasks’ number in DPLB algorithm is the fewest than others, it reduces the
migration time cost and proves that the design of mapped decision variable which consider the
load intensity can effectively balance VMs’ load.

Table 2. the comparison of number of tasks migrated

No. of
tasks

GA
s

HBB-L
B

DPL
B

50 1 0 0
150 5 3 0
250 13 8 2
350 21 15 4
450 30 24 8

Table 3. The load balancing degree change of DPLB

No. of
tasks

Before
migration

After
migration

50 10.94 10.94
150 12.06 12.06
250 17.28 13.56
350 22.33 14.46
450 28.25 16.70

Experiment 3 Success completion ratio comparison

Fig. 7. Comparison of success completion ratio

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4117

Fig. 7 shows the comparison of success completion ratio, the X-axis represents number

of tasks and the Y-axis represents the success completion ratio. From the Fig. 7, we can see
that with the increasing number of tasks, the success completion ratio shows a downward trend,
and DPLB algorithm keeps the highest success completion ratio all the time, namely the
DPLB algorithm can ensure more tasks to be completed before deadline, it proves that the
design of task’s dynamic priority which considers the urgency of task execution has a good
influence on DPLB algorithm, it insures that the task which has the shorter deadline can be
first scheduled and completed.

Experiment 4 Service profit per second

Fig. 8. Comparison of service profit per second

Fig. 8 shows the comparison of service profit per second, the X-axis represents number

of tasks and the Y-axis represents the service profit per second. From the Fig. 8 we can see that
with the increasing number of tasks, the DPLB algorithm keeps the highest value since 150
tasks, namely the DPLB algorithm can bring more benefits per second.

Part II Experiments with recomputed task sets, and comparing dynamic balancing
algorithm which includes GAs algorithm, HBB-LB algorithm, DPLB algorithm.

As we know, some error will happen in the actual cloud environment at times, it will
cause to tasks need to be recomputed on the VM, and even lead to load imbalance. The
dynamic load balancing algorithm is the key to solve this problem in actual cloud environment.
In order to verify the dynamic load balancing performance of DPLB algorithm, we design a
new task sets based on Part I 450 task set. In this new task sets, different number of tasks are
marked as needed to be recomputed, and they are random distributed in the task set, and we
assume that the recomputed task are checked to be recomputed in the end of its processing.

4118 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

Fig. 9. Comparison of four indicators in recomputed task sets. (a) Comparison of Makespan; (b)

Comparison of load balancing degree; (c) Comparison of success completion ratio; (d) Comparison of
service profit per second.

Fig. 9 shows the comparison of four indicators in 450 task sets which with different

number of recomputed tasks, the X-axis represents number of recomputed tasks in 450 task set
and the Y-axis represents the Makespan, load balancing degree, success completion ratio and
service profit per second in turn. From the Fig. 9, we can see that with the increasing number
of tasks, the DPLB algorithm keeps the lowest value in Makespan and load balancing degree,
keeps the highest value in success completion ratio and service profit per second, it proves that
the DPLB algorithm also has a better performance in dynamic environment, it can effectively
reduce the overall task completion time (Makespan) and load balancing degree, and
effectively advance the success completion ratio and service profit per second.

From this experiment, we also get the get the comparing of migration tasks’ number as
Table 4, and load balancing degree change of DPLB algorithm before and after running tasks
migration as Table 5, comparing with Table 2 and Table 3, we can see that the recomputed
tasks augment the migration tasks’ number and the load balancing degree before load
migration, and the DPLB algorithm also get a lower migration task number, it reduces the
migration time cost.

Table 4. The comparison of number of tasks migrated
No. of tasks
recomputed

GA
s

HBB-L
B

DPL
B

50 3 2 2
150 8 5 4
250 16 12 6
350 24 19 12
450 38 30 18

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4119

Table 5. The load balancing degree change of DPLB
No. of tasks
recomputed

Before
migration

After
migration

50 26.32 18.79
150 31.65 21.51
250 38.44 23.12
350 41.97 26.20
450 42.06 28.41

5. Conclusion
In this paper, we propose a task scheduling algorithm based on dynamic priority and load
balancing in cloud computing environment (DPLB). The experimental result shows that the
DPLB algorithm can effectively reduce the total task completion time and balancing the VMs’
load, and it also can archive a better success completion ratio and service profit per second in
different task sets. In future, we plan to improve this algorithm by considering other QoS
factors such as security requirement and more complex tasks such as DAG task.

Acknowledgements

The work described in this paper is supported by National Natural Science Foundation of
China （31770768, the Natural Science Foundation of Heilongjiang Province of China
(F2017001), the Fundamental Research Funds for the Central Universities (2572017CB32)
and China Forestry Nonprofit Industry Research Project （201504307）.

References
[1] Com Yunchuan Sun, Antonio Jara, “An extensible and active semantic model of information

organizing for the Internet of Things,” Personal and Ubiquitous Computing, Volume 18, Issue 8,
1821-1833, 2014. Article (CrossRef Link)

[2] Mishra A, Jain R, Durresi A, “Cloud computing: networking and communication challenges,”
Cloud computing: networking and communication challenges, 50(9), 24-25, 2012.
Article (CrossRef Link)

[3] J. Zhu, Y. Song, D. Jiang and H. Song, "A New Deep-Q-Learning-Based Transmission Scheduling
Mechanism for the Cognitive Internet of Things," IEEE Internet of Things Journal, vol. PP, no. 99,
pp. 1-1, 2017. Article (CrossRef Link)

[4] Gu L, Tang Z, Xie G, “The Implementation of MapReduce Scheduling Algorithm Based on
Priority,” Parallel putational Fluid Dynamics. Springer Berlin Heidelberg, 100-111, 2014.
Article (CrossRef Link)

[5] Liu G, Li J, Xu J, “An Improved Min-Min Algorithm in Cloud Computing,” in Proc. of
Proceedings of the 2012 International Conference of Modern Computer Science and Applications.
Springer Berlin Heidelberg, 53(4), 47-52, 2013. Article (CrossRef Link)

[6] Li Q, Ba W, “A group priority earliest deadline first scheduling algorithm,” Frontiers of Computer
Science, 6(5),560-567, 2012. Article (CrossRef Link)

[7] Xia J L, Chen H, Yang B, “A real-time tasks scheduling algorithm based on dynamic priority,”
Jisuanji Xuebao(Chinese Journal of Computers), 34(12), 2685-2695, 2012.
Article (CrossRef Link)

https://doi.org/10.1007/s00779-014-0786-z
http://dx.doi.org/%2010.1109/MCOM.2012.6295707
http://dx.doi.org/%2010.1109/JIOT.2017.2759728
https://doi.org/10.1007/978-3-642-53962-6_9
https://doi.org/10.1007/978-3-642-33030-8_8
https://doi.org/10.1007/s11704-012-1104-4
http://dx.doi.org/%2010.1109/ICESS.2009.81

4120 Weipeng et al.: An open Scheduling Framework for QoS resource management in the Internet of Things

[8] W. Wei, X. Fan, H. Song, X. Fan and J. Yang, "Imperfect Information Dynamic Stackelberg Game

Based Resource Allocation Using Hidden Markov for Cloud Computing," IEEE Transactions on
Services Computing, vol. PP, no. 99, pp. 1-1. Article (CrossRef Link)

[9] Ren X, Lin R, Zou H, “A dynamic load balancing strategy for cloud computing platform based on
exponential smoothing forecast,” in Proc. of Cloud Computing and Intelligence Systems (CCIS),
2011 IEEE International Conference on. IEEE, 220-224, 2011. Article (CrossRef Link)

[10] Hu J, Gu J, Sun G, et al, “A scheduling strategy on load balancing of virtual machine resources in
cloud computing environment,” Parallel Architectures, Algorithms and Programming (PAAP),
2010 Third International Symposium on. IEEE, 89-96, 2010. Article (CrossRef Link)

[11] Venkata Krishna P, “Honey bee behavior inspired load balancing of tasks in cloud computing
environments,” Applied Soft Computing, 13(5), 2292-2303, 2013. Article (CrossRef Link)

[12] Zhang W, Tan S, Lu Q, et al. “A Genetic-Algorithm-Based Approach for Task Migration in
Pervasive Clouds,” International Journal of Distributed Sensor Networks, 2015.
Article (CrossRef Link)

[13] Ramezani F, Lu J, Hussain F K. “Task-based system load balancing in cloud computing using
particle swarm optimization,” International Journal of Parallel Programming, 42(5), 739-754
2014. Article (CrossRef Link)

[14] Li K, Xu G, Zhao G, et al. “Cloud task scheduling based on load balancing ant colony
optimization,” in Proc. of Chinagrid Conference (ChinaGrid), 2011 Sixth Annual. IEEE, 3-9,
2011. Article (CrossRef Link)

[15] H. Zhang, D. Jiang, F. Li, K. Liu, H. Song and H. Dai, "Cluster-Based Resource Allocation for
Spectrum-Sharing Femtocell Networks," IEEE Access, vol. 4, pp. 8643-8656, 2016.
Article (CrossRef Link)

[16] Chen H, Wang F, Helian N, et al. “User-priority guided Min-Min scheduling algorithm for load
balancing in cloud computing,” in Proc. of Parallel Computing Technologies (PARCOMPTECH),
2013 National Conference on. IEEE, 1-8, 2013. Article (CrossRef Link)

[17] Calheiros R N, Ranjan R, Beloglazov A, et al. “CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning algorithms,” Software:
Practice and Experience, 41(1), 23-50, 2011. Article (CrossRef Link)

[18] Boloor K, Chirkova R, Viniotis Y, et al. “Dynamic request allocation and scheduling for context
aware applications subject to a percentile response time SLA in a distributed cloud,” in Proc. of
Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second International
Conference on. IEEE, 464-472, 2010. Article (CrossRef Link)

[19] Yunchuan Sun, Houbing Song, Antonio J. Jara, Rongfang Bie, “Internet of Things and Big Data
Analytics for Smart and Connected Communities,” IEEE Access,Volume:4, 766-773, 2016.
Article (CrossRef Link)

[20] T. Qiu, K. Zheng, H. Song, M. Han and B. Kantarci, "A Local-Optimization Emergency
Scheduling Scheme With Self-Recovery for a Smart Grid," IEEE Transactions on Industrial
Informatics, vol. 13, no. 6, pp. 3195-3205, Dec. 2017. Article (CrossRef Link)

[21] Armbrust M, Fox A, Griffith R, et al. “A view of cloud computing,” Communications of the ACM,
53(4), 50-58, 2010. Article (CrossRef Link)

[22] Jiguo Yu, Wenchao Li, Xiuzhen Cheng, Mohammed Atiquzzaman, Hua Wang, Li Feng.
“Connected dominating set construction in cognitive radio networks,” Personal and Ubiquitous
Computing,20(5),757-769, 2016. Article (CrossRef Link)

[23] Li Feng, Jiguo Yu, Xiuzhen Cheng, Mohammed Atiquzzaman. “A novel contention-on-demand
design for WiFi hotspots,” Personal and Ubiquitous Computing, 20(5), 705-716, 2016.
Article (CrossRef Link)

[24] Yunchuan Sun, Hongli Yan, Cheng Lu, Rongfang Bie, Zhangbing Zhou. “Constructing the web of
events from raw data in the Web of Things,” Mobile Information Systems. Volume 10, No. 1,
105-125, 2014. Article (CrossRef Link)

[25] Ghanbari S, Othman M. “A priority based job scheduling algorithm in cloud computing,” Procedia
Engineering, 50, 778-785, 2012. Article (CrossRef Link)

http://dx.doi.org/%2010.1109/TSC.2016.2528246
http://dx.doi.org/%2010.1109/CCIS.2011.6045063
http://dx.doi.org/%2010.1109/PAAP.2010.65
https://doi.org/10.1016/j.asoc.2013.01.025
https://doi.org/10.1155/2015/463230
https://doi.org/10.1007/s10766-013-0275-4
http://dx.doi.org/%2010.1109/ChinaGrid.2011.17
http://dx.doi.org/%2010.1109/ACCESS.2016.2635938
http://dx.doi.org/%2010.1109/ParCompTech.2013.6621389
http://dx.doi.org/10.1002/spe.995
http://dx.doi.org/%2010.1109/CloudCom.2010.96
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Yunchuan%22&searchWithin=%22Last%20Name%22:%22Sun%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Houbing%22&searchWithin=%22Last%20Name%22:%22Song%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Antonio%20J.%22&searchWithin=%22Last%20Name%22:%22Jara%22&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22First%20Name%22:%22Rongfang%22&searchWithin=%22Last%20Name%22:%22Bie%22&newsearch=true
http://dx.doi.org/%2010.1109/ACCESS.2016.2529723
http://dx.doi.org/%2010.1109/TII.2017.2715844
http://doi.acm.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/IIKI.2015.66
http://dx.doi.org/10.1007/s00779-016-0942-8
http://dx.doi.org/10.3233/MIS-130173
http://dx.doi.org/doi:10.1016/j.proeng.2012.10.086

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 9, September 2018 4121

[26] Mao Y, Chen X, Li X. “Max-Min Task Scheduling Algorithm for Load Balance in Cloud

Computing,” in Proc. of Proceedings of International Conference on Computer Science and
Information Technology. Springer India, 457-465, 2014. Article (CrossRef Link)

WEIPENG JING (M'17) received the Ph.D. degree from the Harbin Institute of
Technology of China. He is currently an Associate Professor with Northeast Forestry
University, China. His research interests include modeling and scheduling for distributed
computing systems, fault tolerant computing and system reliability, cloud computing, and
spatial data mining. He has published over 50 research articles in refereed journals and
conference proceedings, such as CPC, PUC, and FGCS.

QIUCHENG MIAO received the B.S. degree in electrical and information engineering
from Shihezi University, Shihezi, China, in 2016. He is currently pursuing the master's
degree with Northeast Forestry University. His current research interests include edge
computing, differential privacy and named data networking. He is the member of the ACM.

GUANGSHENG CHEN, He is currently an Professor with Northeast Forestry
University, China. His research interests include Forestry High Performance Computing,
Forestry Big Data Applications. He has published over 50 research articles in refereed
journals and conference proceedings, such as Advanced Materials Research, International
Workshop on Database Applications, GIS: Proceedings of ACM International Symposium
on Advances in Geographic Information Systems.

https://doi.org/10.1007/978-81-322-1759-6_53

