• Title/Summary/Keyword: compensation method

Search Result 2,886, Processing Time 0.028 seconds

A Robust Discrete-Time Adaptive Control with a Compensator (보상기를 이용한 강인한 이산 시간 적응 제어)

  • 이호진;최계근
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1610-1617
    • /
    • 1988
  • In this paper, a robust discrete-time adaptive control with compensation is proposed for single-input single-output discrete-time plants which have unmodeled dynamics. The stability of the overall system is studied using the conic sector stability theorems when a normalized constant gain parameter adaptation algorithm and a properly chosen compensation are used. An illustrative exmple shows that this compensation can also increase the parameter adaptation speed. And a method of compensation using the adaptive observation is also discussed.

  • PDF

A Combined CPG Foot Trajectory and GP Joint Compensation Method for Adaptive Humanoid Walking (적응적인 휴머노이드 보행을 위한 CPG 궤적 및 GP 관절 보정의 결합 기법)

  • Jo, Youngwan;Kim, Hunlee;Seo, Kisung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.9
    • /
    • pp.1551-1556
    • /
    • 2016
  • A combined CPG (Central Pattern Generator) based foot trajectory and GP (Genetic Programming) based joint compensation method is presented for the adaptive humanoid walking. The CPG based foot trajectory methods have been successfully applied to basic slops and variable slops with slow rates, but have a limitation for the steep slop terrains. In order to increase an adaptability of humanoid walking for the rough terrains, a GP based joint compensation method is proposed and combined to the CPG (Central Pattern Generator) based foot trajectory method. The experiments using humanoid robot Nao are conducted in an ODE based Webots simulation environmemt to verify a stability of walking for the various aslope terrains. The proposed method is compared to the previous CPG foot trajectory technique and shows better performances especially for the steep varied slopes.

Frame Rate Up Conversion Method using Partition Block OBMC and Improved Adaptively Weighted Vector Median (분할 블록 OBMC와 개선된 적응 가중 중간값 필터를 이용한 프레임률 증가 기법)

  • Kim, Geun-Tae;Ko, Yun-Ho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2019
  • This paper proposes a new motion vector smoothing and motion compensation method to increase the frame rate of videos. The proposed method reduces false motion vector smoothing by improving the weight with reflecting accuracy to overcome the limitation of the conventional motion vector smoothing using the adaptively weighted vector median. Also, to improve the interpolated image quality of the conventional OBMC(Overlapped Block Motion Compensation), a scheme that divides an original block into 4 sub-blocks and then generates the interpolated frame using the reestimated motion vector for each sub-block is proposed. The simulation results prove that the proposed method can provide much better objective and subjective image quality than the conventional method.

Improvement of the Laser Interferometer Error in the Positioning Accuracy Measurement (레이저간섭계의 위치결정정밀도 측정오차 개선)

  • 황주호;박천홍;이찬홍;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.167-173
    • /
    • 2004
  • The heterodyne He-Ne laser interferometer is the most widely used sensing unit to measure the position error. It measures the positioning error from the displacement of a moving reflector in terms of the wave length. But, the wave length is affected by the variation of atmospheric temperature. Temperature variation of 1$^\circ C$ results in the measuring error of 1ppm. In this paper, for measuring more accurately the position error of the ultra precision stage, the refractive index compensation method is introduced. The wave length of the laser interferometer is compensated using the simultaneously measured room temperature variations in the method. In order to investigate the limit of compensation, the stationary test against two fixed reflectors mounted on the zerodur$\circledR$ plate is performed firstly. From the experiment, it is confirmed that the measuring error of the laser interferometer can be improved from 0.34${\mu}m$ to 0.11${\mu}m$ by the application of the method. Secondly, for the verification of the compensating effect, it is applied to estimate the positioning accuracy of an ultra precision aerostatic stage. Two times of the refractive index compensation are performed to acquire the positioning error of the stage from the initially measured data, that is, to the initially measured positioning error and to the measured positioning error profile after the NC compensation. Although the positioning error of an aerostatic stage cannot be clarified perfectly, it is known that by the compensation method, the measuring error by the laser interferometer can be improved to within 0.1${\mu}m$.

Optimal Compensation of Differential Column Shortening in Tall Buildings for Multi Column Groups (고층건물의 멀티 기둥그룹에 대한 부등기둥축소량의 최적보정기법)

  • Kim, Yeong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.189-197
    • /
    • 2008
  • This study presents optimal compensation algorithm of differential column shortening for more than two column groups. The proposed algorithm produces the minimum story groups and their compensation thicknesses which satisfy constraint conditions on performance and construction and enables not only the relative compensation but also the mixed compensation considering absolute shortening. The simulated annealing algorithm is used as the main optimization technique. The applicability of the proposed algorithm was verified by applying it to the 61-storey building where compensation of differential column shortening had already been performed. Using, the proposed algorithm compensation was performed easily and the number of compensation was less than the field method.

A Non-Linearity Compensation Method for Matrix Converter Drives Using PQR Power Theory (PQR 전력이론을 이용한 Matrix Converter 구동 시스템의 비선형특성 보상)

  • Lee Kyo-Beum
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.751-758
    • /
    • 2004
  • This paper presents a new method to compensate the non-linearity for matrix converter drives using PQR instantaneous Power theory. The non-linearity of matrix converter drives such as commutation delay, turn-on and turn-off time of switching device, and on-state switching device voltage drop is modelled by PQR power theory and compensated using a reference current control scheme. The proposed method does not need any additional hardware and off-line experimental measurements. The proposed compensation method is applied for high performance induction motor drives using a 3 kW matrix converter system without a speed sensor. Simulation and experimental results show the proposed method using PQR power theory Provides good compensating characteristic.

Development of Optical Fiber Coupled Displacement Probe Sensor with a New Compensation Method (보상법을 적용한 광섬유 변위센서의 개발)

  • ;;;P. Sainsot;L. Flamand
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.27-32
    • /
    • 2002
  • The intensity modulated type (reflective method) optical fiber sensor is a well -known method and widely applied to the displacement measurements and other industrial purposes. This type sensor has the advantages of relatively cheap cost, small sensor size and easiness of operation. The sensitivity of the sensor is very dependent of several error terms; the variation in the intensity of the light source and the changes in the surface reflectivity of the object. An optical fiber coupled displacement probe with a new compensation method is presented in this paper. The proposed displacement sensor can measure the displacements of the target surface independent of surface reflectivity error that is caused by the materials and surface processing grade.

Double Electro-Magnetic Force Compensation Method for the Micro Force Measurement (미소 힘 측정을 위한 이중 전자기힘 보상방법)

  • 최임묵;우삼용;김부식;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-111
    • /
    • 2003
  • Micro force measurement is required more frequently for a precision manufacturing and investment in fields of precision industries such as semiconductor, chemistry and biology, and so forth. Null balance method has been introduced as an alternative of a loadcell. Loadcells have advantages in aspects of low cost and easy manufacturing, but have also the limitation in resolution and sensitivity to environment variations. In this paper, null balance method is explained and the dominant parameters related to system performances are mentioned. Null position sensor, electromagnetic system and controller are investigated. Also, the characteristic experiment is carried out in order to estimate the resolution and the measurement range. In order to overcome the limitation by the drift of position sensor and the performance of controller, double electromagnetic force compensation method is proposed and experimented. After controlling and filtering, the resolution under $\pm$ 1mg and measurement range over 300g could be obtained.

A Study on the Optimal Reactive Power Calculation Method of Induction Generator for Marine Small Hydraulic Power (해양 소수력발전용 유도발전기의 최적 무효전력 산정방식에 관한 연구)

  • Lee, Won-Jae;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.100-107
    • /
    • 2013
  • Since the West Sea experiences a big difference in tides, the output power of the small marine hydroelectric power plant varies with the tide. When an induction generator is used here for small hydroelectric power, the reactive power capacitor should be installed at the generator main bus to compensate for the changes in power. As such, the sizing method for the power compensation of the induction generator is reviewed and an optimal method for compensation is suggested. The self-excitation minimum capacitor capacity method, which prevents high voltages, and the power factor automatic control method, which retains a power factor of greater than 90% are reviewed. The compensation effect of reactive power is confirmed through a case study.

Characteristics of Compensation for Distorted Optical Pulse with Initial Frequency Chirp in 3 X 40 Gbps WDM Systems Adopted Mid-Span Spectral Inversion

  • Lee, Seong-Real;Lee, Yun-Hyun
    • Journal of electromagnetic engineering and science
    • /
    • v.3 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • In this paper, we investigated the degree of compensation for distorted optical pulse of wavelength division multiplexed(WDM) channel with initial frequency chirp generated in optical transmitter. The WDM channel signal distortion is due to chromatic dispersion, self phase modulation(SPM) and cross phase modulation(XPM) in fiber. The considered system is 3 ${\times}$ 40 Gbps intensity modulation direct detection(IM/DD) WDM transmission systems, which adopted mid-span spectral inversion(MSSI) as compensation method. We confirmed that the effect of initial frequency chirp on compensation for signal distortion due to a SPM is gradually decreased as a dispersion coefficient of fiber becomes gradually small. But, in the aspect of a compensation for signal distortion due to both SPM and XPM, the effect of initial frequency chirp on compensation is gradually decreased as a dispersion coefficient of fiber becomes gradually large.