DOI QR코드

DOI QR Code

Frame Rate Up Conversion Method using Partition Block OBMC and Improved Adaptively Weighted Vector Median

분할 블록 OBMC와 개선된 적응 가중 중간값 필터를 이용한 프레임률 증가 기법

  • 김근태 (충남대학교 메카트로닉스공학과) ;
  • 고윤호 (충남대학교 메카트로닉스공학과)
  • Received : 2019.01.18
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

This paper proposes a new motion vector smoothing and motion compensation method to increase the frame rate of videos. The proposed method reduces false motion vector smoothing by improving the weight with reflecting accuracy to overcome the limitation of the conventional motion vector smoothing using the adaptively weighted vector median. Also, to improve the interpolated image quality of the conventional OBMC(Overlapped Block Motion Compensation), a scheme that divides an original block into 4 sub-blocks and then generates the interpolated frame using the reestimated motion vector for each sub-block is proposed. The simulation results prove that the proposed method can provide much better objective and subjective image quality than the conventional method.

본 논문에서는 영상의 프레임률을 증가시키기 위한 새로운 움직임 벡터 평활화 기법과 움직임 보상 기법에 대해 제안한다. 제안하는 움직임 벡터 평활화 방법은 적응적 가중 벡터 중간값 필터를 사용하는 기존 방법의 한계를 극복하기 위해 정확도를 반영하여 가중치를 개선함으로써 잘못된 움직임 평활화를 줄인다. 또한 기존 움직임 보상 기법인 OBMC로 보간된 영상의 화질을 향상시키기 위해 원래의 블록을 4등분하여 등분된 각 블록을 기준으로 움직임 벡터를 재추정하고 이를 통해 보간 프레임을 생성하는 방법을 제안하다. 모의실험 결과는 제안된 방법이 객관적 측면과 주관적 측면에서 기존 기법에 비해 우수한 화질을 제공할 수 있음을 보인다.

Keywords

SOJBB3_2019_v24n1_1_f0001.png 이미지

Fig. 1 Afterimage in Interpolated Frame

SOJBB3_2019_v24n1_1_f0002.png 이미지

Fig. 2 Block Partition OBMC (a) Motion Vector Field before Partition (b) Motion Vector Field after Partition

SOJBB3_2019_v24n1_1_f0003.png 이미지

Fig. 3 Image Quality Evaluation for Each Frame of YachtRide

SOJBB3_2019_v24n1_1_f0004.png 이미지

Fig. 4 Motion Compensated Image with Motion Vector Field (a) without Motion Vector Refinement (Original Vector Field) (b) Conventional Motion Vector Refinement[15] (c) Conventional AWVM Filter[20] (d) Proposed AWVM filter

SOJBB3_2019_v24n1_1_f0005.png 이미지

Fig. 5 Image Quality Evaluation for Each Frame of YachtRide

SOJBB3_2019_v24n1_1_f0006.png 이미지

Fig. 6 Subjective Evaluation for the Proposed Block Partition OBMC (a) Conventional OBMC Method (b) Proposed Block Partition OBMC Method

Table 1 Performance Evaluation for the Proposed AWVM Filter

SOJBB3_2019_v24n1_1_t0001.png 이미지

Table 2 Performance Evaluation for the Proposed Block Partition OBMC

SOJBB3_2019_v24n1_1_t0002.png 이미지

References

  1. Lee, T.B. and Kang, H.S., "Material Estimation Method Using Dual-Energy X-Ray Image for Cargo Inspection System," Journal of the Korea Industrial Information Systems Research, Vol. 23, No. 1, pp. 1-12, 2018. https://doi.org/10.9723/JKSIIS.2018.23.1.001
  2. Oh, K.J., Han, D.H., and Kwon, S.K., "Character Floating Hologram using Detection of User's Height and Motion by Depth Image," Journal of the Korea Industrial Information Systems Research, Vol. 23, No. 4, pp. 33-40, 2018. https://doi.org/10.9723/JKSIIS.2018.23.4.033
  3. Lee, Y.H. and Huang, M.R., "Algorithm and Architecture Design of a Hardware-Efficient Frame Rate Upconversion Engine," IEEE Transactions on Very Large Scale Integration Systems, Vol. 26, No. 11, pp. 2553-2566, 2018. https://doi.org/10.1109/TVLSI.2018.2849438
  4. Song, W., Heo, P.G., Choi, G., Oh, S.R., and Park, H.W., "Motion Compensated Frame Interpolation of Occlusion and Motion Ambiguity Regions Using Color-Plus-Depth Information," IEEE International Conference on Image Processing, pp. 1478-1482, 2018.
  5. Lee, K., "Adaptive Frame Rate Up-Conversion Algorithms using Block Complexity Information," Journal of Korea Multimedia Society, Vol. 21, No. 8, pp. 813-820, 2018. https://doi.org/10.9717/kmms.2018.21.8.813
  6. Huang, Y.L., Chen, F.C., and Chien, S.Y., "Algorithm and Architecture Design of Multirate Frame Rate Up-conversion for Ultra-HD LCD Systems," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 27, No. 2, pp. 2739-2752, 2017. https://doi.org/10.1109/TCSVT.2016.2596198
  7. Thang, N.V., and Lee, H.J., "A Semi-Global Motion Estimation of a Repetition Pattern Region for Frame Interpolation," IEEE International Conference on Image Processing, pp. 2563-2566, 2017.
  8. Someya, J., Okuda, N. and Sugiura, H., "The Suppression of Noise on a Dithering Image in LCD Overdrive," IEEE Transactions on Consumer Electronics, Vol. 52, No. 4, pp. 1325-1332, 2006. https://doi.org/10.1109/TCE.2006.273152
  9. Chan, S.H., Wu, T.X., and Nguyen, T.Q., "Comparison of Two Frame Rate Conversion Schemes for Reducing LCD Motion Blurs," IEEE Signal Processing Letters, Vol. 17, No. 9, pp. 783-786, 2010. https://doi.org/10.1109/LSP.2010.2055238
  10. Lu, J., and Liou, M.L., "A Simple and Efficient Search Algorithm for Block-Matching Motion Estimation," IEEE Transactions on Circuits And Systems For Video Technology, Vol 7, No. 2, pp. 429-433, 1997. https://doi.org/10.1109/76.564122
  11. Kwon, H., "Multi-Level Motion Estimation Algorithm using Motion Information in Blocks," Journal of Korea Multimedia Society, Vol. 6, No. 2, pp. 259-266, 2003.
  12. Koo, S.J., and Kim, K.W., Kim, J.H., and Hwang, C.S., "Motion Estimation for Transcoding Using Intermediate Data on the Compressed Video," Proceedings of the Korea Society for Industrial Systems Conference, pp. 288-299, 2001.
  13. Kim, K.K. and Park, K.N., "An Adaptive Block Matching Motion Estimation Method using Optical Flow," Journal of the Korea Industrial Information Systems Research, Vol. 13, No. 1, pp. 57-67, 2008.
  14. Akin, A., Cetin, M., Ozcan, Z., Erbagci, B., and Hamzaoglu, I., "An Adaptive Bilateral Motion Estimation Algorithm and its Hardware Architecture," IEEE Transactions on Consumer Electronics, Vol. 58, No. 2, pp. 712-720, 2012. https://doi.org/10.1109/TCE.2012.6227481
  15. Jung, Y.H., Kim, J.H., and Ko, Y.H., "Frame Rate Up Conversion Method using Bilateral Motion Estimation Based on Texture Activity and Neighboring Motion Information," Journal of Korea Multimedia Society, Vol. 17, No. 7, pp. 797-805, 2014. https://doi.org/10.9717/kmms.2014.17.7.797
  16. Kang, S.J., Cho, K.R., and Kim, Y.H., "Motion Compensated Frame Rate Up-Conversion Using Extended Bilateral Motion Estimation," IEEE Transactions on Consumer Electronics, Vol. 53, No. 4, pp. 1759-1767, 2007. https://doi.org/10.1109/TCE.2007.4429281
  17. Park, J.G., Bae, C.Y., Lee, K.J., and Jeong, J.C., "Frame Rate Up-Conversion Considering the Direction and Magnitude of Motion Vectors," Journal of Broadcast Engineering, Vol. 20, No. 6, pp. 328-331, 2015.
  18. Park, D.J. and Jeong, J.C., "Adaptive Extended Bilateral Motion Estimation Considering Block Type and Frame Motion Activity," Journal of Broadcast Engineering, Vol. 18, No. 3, pp. 342-348, 2013. https://doi.org/10.5909/JBE.2013.18.3.342
  19. Astola, J., Haavisto, P., and Neubo, Y., "Vector median filters," Proceedings of the IEEE, Vol. 78, No. 4, pp. 678-689, 1990. https://doi.org/10.1109/5.54807
  20. Alparone, L., Barni, M., Bartilini, F., and Cappellini, V., "Adaptively Weighted Vector-Median Filters for Motion-Field Smoothing," IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, Vol. 4, pp. 2267-2270, 1996.
  21. Park, K.N, "An Effective Postprocessing Algorithm for Block Encoded Images Using Adaptive Filtering and Interpolation," Journal of the Korea Industrial Information Systems Research, Vol. 12, No. 1, pp. 39-45, 2007.
  22. Choi, B.D., Han, J.W., Kim, C.S., and Ko, S.J., "Motion Compensated Frame Interpolation Using Bilateral Motion Estimation and Adaptive Overlapped Block Motion Compensation," IEEE Transactions on Circuits and Systems for Video Technology, Vol. 17, No. 4, pp. 407-416, 2007. https://doi.org/10.1109/TCSVT.2007.893835
  23. Lee, S.H., Kwon, O.J., and Park, R.H., "Weighted-Adaptive Motion-Compensated Frame Rate Up-Conversion," IEEE Transactions on Consumer Electronics, Vol. 49, No. 3, pp. 485-492, 2003. https://doi.org/10.1109/TCE.2003.1233759