• 제목/요약/키워드: comparison principle

검색결과 469건 처리시간 0.021초

High-Reliability Three-Phase Dual-Buck Grid-Connected Inverter without Shoot-Through Problem

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.454-462
    • /
    • 2019
  • When compared to traditional bridge-type inverters, the dual-buck inverter has a higher reliability due to the fact that its bridge legs do not have a shoot-through problem. In this paper, the working principle of the dual-buck inverter is analyzed. A comparison of the working modes under full-cycle and half-cycle control is discussed. With half-cycle control, the inverter can realize a higher efficiency. However, this results in current zero-crossing distortion. The corresponding control strategy of the dual-buck inverter is proposed in order to realize both high efficiency and low current harmonic distortion. In addition, the system stability is analyzed. Dead-time is unnecessary due to the advantages of the topology. Thus, the current harmonic distortion can be further reduced. An inverter with the proposed control strategy has the advantages of high reliability, high efficiency and low current harmonic distortion. Finally, simulation and experimental results are given to verify the theoretical analysis.

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations

  • Sobhy, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.195-208
    • /
    • 2019
  • Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • 제23권6호
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.

미니 하이드로 사이클론 분리기의 이중배열을 통한 성능특성 평가 (Evaluation of Performance Characteristics by Dual Arrangement of Mini-hydrocyclone Separators)

  • 권제영;김승경;홍준규;이형욱;강명창
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.17-23
    • /
    • 2021
  • A cyclone is a dust-separating mechanism that works on the principle of centrifugal force. The performance of a cyclone is evaluated using pressure loss and collection efficiency. A multi-cyclone arrangement is used to improve the collection efficiency within a limited area. In this study, experiments and numerical analyses were conducted on a dual arrangement of mini-hydrocyclone separators, which was fabricated using 3D printing. The experiment was performed at an inlet flow rate of 0.7 m/s, and alumina powder with a particle size of 0.5, 15, and 50 ㎛. ANSYS FLUENT, was used for the numerical analysis. The reliability of the numerical analysis was verified through a comparison with the experimental results. The errors in the experiment and numerical analysis were confirmed to be 2% at the outlet flow rate.

Daesoon Thought as the Source of Daesoon Jinrihoe's Social Work

  • SORYTE, Rosita
    • 대순사상과 동아시아종교
    • /
    • 제1권2호
    • /
    • pp.89-114
    • /
    • 2022
  • Both in Korea and internationally, many know and appreciate Daesoon Jinrihoe for its social work in the three main areas of education, social welfare and health care, and charity aid. The article surveys Daesoon Jinrihoe's activities in these three areas and proposes a comparison with the charitable and ecological work performed by the Taiwanese Buddhist charity (and new religious movement) Tzu Chi, the peace activities of Soka Gakkai, and the projects developed in Bhutan to implement the policy of Gross National Happiness. Tzu Chi is mostly known for its massive recycling activities, but in fact its view of charity and ecology is based on a specific Buddhist theology. Soka Gakkai's vision of peace relates to its interpretation of Nichiren Buddhism. Gross National Happiness in Bhutan is a project promoted by the government, but scholars who have studied it have concluded that it is deeply rooted in Drukpa Kagyu, the dominant school in Bhutanese Buddhism. Similarities are noted, as well as differences with the Western Christian and post-Christian approach to charity, which is largely based on an affirmation of the self. Daesoon Jinrihoe's social work shares with the Buddhist cases studied in the article the idea that the self may deceive (self-deception) but appears to be inspired by the unique principle of Sangsaeng, and by the idea that the root causes of social problems are grievances accumulated through thousands of years and in need of being resolved.

Nonlinear thermal vibration of pre/post-buckled two-dimensional FGM tapered microbeams based on a higher order shear deformation theory

  • Hendi, Asmaa A.;Eltaher, Mohamed A.;Mohamed, Salwa A.;Attia, Mohamed A.;Abdalla, A.W.
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.787-803
    • /
    • 2021
  • The size-dependent nonlinear thermomechanical vibration analysis of pre- and post-buckled tapered two-directional functionally graded (2D-FG) microbeams is presented in this study. In the context of the modified couple stress theory, the formulations are derived based on the parabolic shear deformation beam theory and von Karman nonlinear strains. Different thermomechanical material properties are assumed to be temperature-dependent and smoothly vary in both length and thickness directions using the power law and the physical neutral axis concept is employed. The nonlinear governing equations are derived using the Hamilton principle and the resulting variable coefficient equations of motion are solved using the differential quadrature method (DQM) and iterative Newton's method for clamped-clamped and simply supported boundary conditions. Comparison studies are presented to validate the derived model and solution procedure. The impacts of induced thermal moments, temperature power index, two gradient indices, nonuniform cross-section, and microstructure length scale parameter on the frequency-temperature configurations are explored for both clamped and simply supported microbeams.

Experimental study on the interaction force between a permanent magnet and a superconducting roll stack

  • Wenxin Li;Tianhui Yang;Ying Xin
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권1호
    • /
    • pp.11-15
    • /
    • 2023
  • In recent years, the interaction force between a permanent magnet and a closed superconductor coil has been gradually investigated in depth. The principle and application potential of an energy storage/convertor composed of a magnet and a closed superconducting coil have been proved. However, the study on the force between a magnet and a non-closed superconducting coil (superconducting roll stack) has hardly been reported in previous literature. The behavior of this kind of interaction and its influence to the interaction force between a permanent and a closed superconducting coil are also still unclear. In this paper, first we investigated the interaction force between a magnet and a superconducting roll stack. Then, a series of experiments were designed and conducted to clarify the factors affected the interaction force, including the geometrical parameters of the superconducting roll stack and the magnetic field density at the roll stack. Moreover, the comparison of the interaction forces between the magnet and roll stack or a closed coil was also introduced.

한국에 있어서의 히이트 펌프계의 최적 설계 조건에 관한 연구 (A Study on Optimum Design Condition for 'HEAT PUMP' System in Korea)

  • 최영배
    • 대한설비공학회지:설비저널
    • /
    • 제10권4호
    • /
    • pp.304-315
    • /
    • 1981
  • This paper presents, the result of the study for the fluctuant temperature of the out-side air adopting the heat pump system in seoul, Taejean, Taegu, Busan and Jejeu among principle cities in korea for the purpose of checking the heating capacity, Heat pump capacity (outlet capacity), Coefficient of performance and running cost in comparison with the supporting the energy for the boiler's operation. According to the supply temperature changes of the out door coil by the out side air-return air mixing ratio, the Coefficient of performance is increased from 3. 1 to 5.0. Particularly, in Taegu, it is necessary to adopt the heat pump system against the supplement heat supply on the full outside air intake in January of the heating period, and it was recognized that the running cost is cheaper than that of the Boiler use. At the same time, if it is able to get $25\%$ of return air of the inside in the Seoul, it could be saved its costs when we use the supplementary boiler. And I think it is necessary to the development.

  • PDF