• 제목/요약/키워드: comparative genomic

검색결과 241건 처리시간 0.029초

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • 한국육종학회지
    • /
    • 제43권2호
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

Genome-wide Examination of Chromosomal Aberrations in Neuroblastoma SH-SY5Y Cells by Array-based Comparative Genomic Hybridization

  • Do, Jin Hwan;Kim, In Su;Park, Tae-Kyu;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • 제24권1호
    • /
    • pp.105-112
    • /
    • 2007
  • Most neuroblastoma cells have chromosomal aberrations such as gains, losses, amplifications and deletions of DNA. Conventional approaches like fluorescence in situ hybridization (FISH) or metaphase comparative genomic hybridization (CGH) can detect chromosomal aberrations, but their resolution is low. In this study we used array-based comparative genomic hybridization to identify the chromosomal aberrations in human neuroblastoma SH-SY5Y cells. The DNA microarray consisting of 4000 bacterial artificial chromosome (BAC) clones was able to detect chromosomal regions with aberrations. The SH-SY5Y cells showed chromosomal gains in 1q12~ q44 (Chr1:142188905-246084832), 7 (over the whole chro-mosome), 2p25.3~p16.3 (Chr2:18179-47899074), and 17q 21.32~q25.3 (Chr17:42153031-78607159), while chromosomal losses detected were the distal deletion of 1p36.33 (Chr1:552910-563807), 14q21.1~q21.3 (Chr14:37666271-47282550), and 22q13.1~q13.2 (Chr22:36885764-4190 7123). Except for the gain in 17q21 and the loss in 1p36, the other regions of gain or loss in SH-SY5Y cells were newly identified.

Prospect of plant molecular cytogenetics in the 21st century

  • Mukai, Yasuhiko
    • 한국생명과학회:학술대회논문집
    • /
    • 한국생명과학회 2003년도 제40회 국제학술심포지움
    • /
    • pp.14-27
    • /
    • 2003
  • The genomes of Arabidopsis and rice have been fully sequenced. Genomic sequencing provides global information about genome structure and organization. A comprehensive research account of our recent studies conducted on genome painting, comparative genomics and genome fusion is provided in order to project the prospects of plant cytogenetic research in post-genomics era. Genome analysis by GISH using genome painting is demonstrated as an excellent means suitable for visualization of a whole genome, since total genomic DNA representing the overall molecular composition of the genome is used as a probe. FISH on extended DNA fibers has been developed for high-resolution FISH and has contributed to determining the copy number and order of genes. We have also mapped a number of genes involving starch synthesis on wheat chromosomes by FISH and compared the position of these genes on linkage map of rice. Macro synteny between wheat and rice can be observed by comparing the location of these genes in spite of the fact that the size of DNA per chromosome differs by 20 fold in two. Moreover, to approach our goal towards making bread and udon noodles from rice flour in future by incorporating bread making and the noodle qualifies in rice, we have been successful in introducing large genomic DNA fragments containing agronomically important genes of wheat into a rice by successive introduction of large insert BAC clones, there by expanding genetic variability in rice. We call this method genome fusion.

  • PDF

Identification of Genomic Aberrations by Array Comparative Genomic Hybridization in Patients with Aortic Dissections

  • Suh, Jong-Hui;Yoon, Jeong-Seob;Kwon, Jong-Bum;Kim, Hwan-Wook;Wang, Young-Pil
    • Journal of Chest Surgery
    • /
    • 제44권2호
    • /
    • pp.123-130
    • /
    • 2011
  • Background: The aim of the present study was to identify chromosomal loci that contribute to the pathogenesis of aortic dissection (AD) in a Korean population using array comparative genomic hybridization (CGH) and to confirm the results using real-time polymerase chain reaction (PCR). Materials and Methods: Eighteen patients with ADs were enrolled in this study. Genomic DNA was extracted from individual blood samples, and array CGH analyses were performed. Four corresponding genes with obvious genomic changes were analyzed using real-time PCR in order to assess the level of genomic imbalance identified by array CGH. Results: Genomic gains were most frequently detected at 8q24.3 (56%), followed by regions 7q35, 11q12.2, and 15q25.2 (50%). Genomic losses were most frequently observed at 4q35.2 (56%). Real-time PCR confirmed the results of the array CGH studies of the COL6A2, DGCR14, PCSK6, and SDHA genes. Conclusion: This is the first study to identify candidate regions by array CGH in patients with ADs. The identification of genes that may predispose an individual to AD may lead to a better understanding of the mechanism of AD formation. Further multicenter studies comparing cohorts of patients of different ethnicities are warranted.

분자 세포 유전학 기법에 응용되는 영상 처리 기술 (Image Analysis Algorithms for Comparative Genomic Hybridization)

  • 김대석;유진성;이진우;김종원;문신용;최영민
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.66-69
    • /
    • 1998
  • Comparative Genomic Hybridization (CGH)은 세포 내 특정 DNA 서열 이상을 염색체상에 보여주는 중요한 분자 세포 유전학 기법이다. CGH 기법에서는 세포 분열 중기의 염색체에서 준비한 형광 비율 영상의 정량적 분석을 위해서 Digital 영상 처리 기술이 쓰여야 한다. 본 논문에서는 최근 연구 개발된 영상 처리 algorithm들이 어떻게 CGH 기법에 쓰이는 지를 소개하려 한다. 각 염색체의 형광 비율 profile를 평균하기 위해, 염색체 영상의 이원화, 염색체 영상 뼈대 변환(skeletonization), 뼈대 정보의 변수화와 영상 명암의 재추출을 통한 굽은 염색체 영상 펴기 등이 언구되었다. 개발된 algorithm 들은 바이오메드랩 사의 ChIPS 핵형 정렬 시스템에 구현했다.

  • PDF

Two-Stage Logistic Regression for Cancer Classi cation and Prediction from Copy-Numbe Changes in cDNA Microarray-Based Comparative Genomic Hybridization

  • Kim, Mi-Jung
    • 응용통계연구
    • /
    • 제24권5호
    • /
    • pp.847-859
    • /
    • 2011
  • cDNA microarray-based comparative genomic hybridization(CGH) data includes low-intensity spots and thus a statistical strategy is needed to detect subtle differences between different cancer classes. In this study, genes displaying a high frequency of alteration in one of the different classes were selected among the pre-selected genes that show relatively large variations between genes compared to total variations. Utilizing copy-number changes of the selected genes, this study suggests a statistical approach to predict patients' classes with increased performance by pre-classifying patients with similar genetic alteration scores. Two-stage logistic regression model(TLRM) was suggested to pre-classify homogeneous patients and predict patients' classes for cancer prediction; a decision tree(DT) was combined with logistic regression on the set of informative genes. TLRM was constructed in cDNA microarray-based CGH data from the Cancer Metastasis Research Center(CMRC) at Yonsei University; it predicted the patients' clinical diagnoses with perfect matches (except for one patient among the high-risk and low-risk classified patients where the performance of predictions is critical due to the high sensitivity and specificity requirements for clinical treatments. Accuracy validated by leave-one-out cross-validation(LOOCV) was 83.3% while other classification methods of CART and DT performed as comparisons showed worse performances than TLRM.

Quantitative analysis using decreasing amounts of genomic DNA to assess the performance of the oligo CGH microarray

  • Song Sunny;Lazar Vladimir;Witte Anniek De;Ilsley Diane
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2006년도 Principles and Practice of Microarray for Biomedical Researchers
    • /
    • pp.71-76
    • /
    • 2006
  • Comparative genomic hybridization (CGH) is a technique for studying chromosomal changes in cancer. As cancerous cells multiply, they can undergo dramatic chromosomal changes, including chromosome loss, duplication, and the translocation of DNA from one chromosome to another. Chromosome aberrations have previously been detected using optical imaging of whole chromosomes, a technique with limited sensitivity, resolution, quantification, and throughput. Efforts in recent years to use microarrays to overcome these limitations have been hampered by inadequate sensitivity, specificity and flexibility of the microarray systems. The oligonucleotide CGH microarray system overcomes several scientific hurdles that have impeded comparative genomic studies of cancer. This new system can reliably detect single copy deletions in chromosomes. The system includes a whole human genome microarray, reagents for sample preparation, an optimized microarray processing protocol, and software for data analysis and visualization. In this study, we determined the sensitivity, accuracy and reproducibility of the new system. Using this assay, we find that the performance of the complete system was maintained over a range of input genomic DNA from 5 ug down to 0.15 ug.

  • PDF

Comparative Genome Analysis Reveals Natural Variations in the Genomes of Erwinia pyrifoliae, a Black Shoot Blight Pathogen in Apple and Pear

  • Lee, Gyu Min;Ko, Seyoung;Oh, Eom-Ji;Song, Yu-Rim;Kim, Donghyuk;Oh, Chang-Sik
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.428-439
    • /
    • 2020
  • Erwinia pyrifoliae is a Gram-negative bacterial plant pathogen that causes black shoot blight in apple and pear. Although earlier studies reported the genome comparison of Erwinia species, E. pyrifoliae strains for such analysis were isolated in 1996. In 2014, the strain E. pyrifoliae EpK1/15 was newly isolated in the apple tree showing black shoot blight in South Korea. This study aimed to better understand the similarities and differences caused by natural variations at the genomic level between newly isolated E. pyrifoliae EpK1/15 and the strain Ep1/96, which were isolated almost 20 years apart. Several comparative genomic analyses were conducted, and Clusters of Orthologous Groups of proteins (COG) database was used to classify functional annotation for each strain. E. pyrifoliae EpK1/15 had similarities with the Ep1/96 strain in stress-related genes, Tn3 transposase of insertion sequences, type III secretion systems, and small RNAs. The most remarkable difference to emerge from this comparison was that although the draft genome of E. pyrifoliae EpK1/15 was almost conserved, Epk1/15 strain had at least three sorts of structural variations in functional annotation according to COG database; chromosome inversion, translocation, and duplication. These results indicate that E. pyrifoliae species has gone natural variations within almost 20 years at the genomic level, and we can trace their similarities and differences with comparative genomic analysis.

Comparative Genomic Analysis of Lactobacillus rhamnosus BFE5264, a Probiotic Strain Isolated from Traditional Maasai Fermented Milk

  • Jeong, Haeyoung;Choi, Sanghaeng;Park, Gun-Seok;Ji, Yosep;Park, Soyoung;Holzapfel, Wilhelm Heinrich;Mathara, Julius Maina;Kang, Jihee
    • 한국미생물·생명공학회지
    • /
    • 제47권1호
    • /
    • pp.25-33
    • /
    • 2019
  • Lactobacillus rhamnosus BFE5264, isolated from a Maasai fermented milk product ("kule naoto"), was previously shown to exhibit bile acid resistance, cholesterol assimilation, and adhesion to HT29-MTX cells in vitro. In this study, we re-annotated and analyzed the previously reported complete genome sequence of strain BFE5264. The genome consists of a circular chromosome of 3,086,152 bp and a putative plasmid, which is the largest one identified among L. rhamnosus strains. Among the 2,883 predicted protein-coding genes, those with carbohydrate-related functions were the most abundant. Genome analysis of strain BFE5264 revealed two consecutive CRISPR regions and no known virulence factors or antimicrobial resistance genes. In addition, previously known highly variable regions in the genomes of L. rhamnosus strains were also evident in strain BFE5264. Pairwise comparison with the most studied probiotic strain L. rhamnosus GG revealed strain BFE5264-specific deletions, probably due to insertion sequence-mediated recombination. The latter was associated with loss of the spaCBA pilin gene cluster and exopolysaccharide biosynthetic genes. Comparative genomic analysis of the sequences from all available L. rhamnosus strains revealed that they were clustered into two groups, being within the same species boundary based on the average nucleotide identities. Strain BFE5264 had a sister group relationship with the group that contained strain GG, but neither ANI-based hierarchical clustering nor core-gene-based phylogenetic tree construction showed a clear distinctive pattern associated with the isolation source, implying that the genotype alone cannot account for their ecological niches. These results provide insights into the probiotic mechanisms of strain BFE5264 at the genomic level.