• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.026 seconds

An Experiment of Consolidation Behavior for Partly and Fully Penetrated SCP Ground

  • Jung, Jong-Bum;Moriwaki, Takeo;Lee, Kang-Il;Kang, Kwon-Su;Park, Byong-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.3-16
    • /
    • 1999
  • A series of model tests was conducted to investigate the one-dimensional consolidation behavior of an improved ground where sand compaction piles(SCP) were either fully or partly installed in the model clay ground. In order to check the one-dimensional consolidation settlement and stress concentration ratios, earth pressure, pore pressure transducers and dial gauges were installed in the model clay ground. The test results revealed that the consolidation settlement of the partly penetrated SCP ground was larger than that of the fully penetrated SCP ground, and the stress concentration ratios (m) of the fully penetrated SCP ground were higher than these of the partly penetrated SCP ground. The stress concentration ratio was decreasing with the increase in the penetration depth of SCP.

  • PDF

Effect of palm oil on the basic geotechnical properties of kaolin

  • Sriraam, Anirudh Subramanya;Raghunandan, Mavinakere Eshwaraiah;Ti, Tey Beng;Kodikara, Jayantha
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.179-188
    • /
    • 2019
  • This paper presents an experimental study to evaluate the effect of palm oil on the selected basic physical-chemical and geotechnical properties of kaolin. The experimental findings are further compared with literature outcomes investigating similar properties of fine grained soils subjected to contamination by different types of oils. To this end, palm oil was mixed with oven dried kaolin samples-aiding oil's interaction (coating) with dry particles first, in anticipation to emphasize the effect of oil on the properties of kaolin, which would be difficult to achieve otherwise. Oil content was limited to 40% by dry weight of kaolin, supplemented at intervals of 10% from clean kaolin samples. Observations highlight physical particle-to-particle bonding resulting in the formation of pseudo-silt sized clusters due to palm oil's interaction as evinced in the particle size distribution and SEM micrographs. These clusters, aided by water repellency property of the oil coating the kaolin particles, was analyzed to show notable variations in kaolin's consistency-measured as liquid and plastic limits. Furthermore, results from compaction tests indicates contribution of oil's viscosity on the compaction behavior of kaolin - showing decrease in the maximum dry unit weight (${\gamma}_{d,max}$) and optimum moisture content ($w_{opt}$) values with increasing oil contents, while their decrease rates were directly and inversely proportional in ${\gamma}_{d,max}$ and $w_{opt}$ values with oil contents respectively. Comparative study in similar terms, also validates this lower and higher decrease rates in ${\gamma}_{d,max}$ and $w_{opt}$ values of the fine grained soils respectively, when subjected to contamination by oil with higher viscosity.

Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.655-665
    • /
    • 2016
  • This paper aims to develop models to accurately predict the behavior of fresh concrete exposed to vibration using artificial neural networks (ANNs) model and regression model (RM). For this purpose, behavior of a full scale precast concrete mold was investigated experimentally and numerically. Experiment was performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using both ANNs and RM. For the modeling of ANNs: Experimental data were divided randomly into two parts. One of them was used for training of the ANNs and the remaining part was used for testing the ANNs. For the modeling of RM: Sinusoidal regression model equation was determined and the predicted data was compared with measured data. Finally, both models were compared with each other. The comparisons of both models show that the measured and testing results are compatible. Regression analysis is a traditional method that can be used for modeling with simple methods. However, this study also showed that ANN modeling can be used as an alternative method for behavior of fresh concrete exposed to vibration in precast concrete structures.

The Effect of an Aluminum Mold on Densification of Copper Powder Under Warm Pressing (온간금형 압축시 구리 분말의 치밀화에 대한 알루미늄 몰드의 영향)

  • Lee, Sung-Chul;Park, Tae-Uk;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.4
    • /
    • pp.333-339
    • /
    • 2008
  • Densification behavior of copper powder was investigated to study the effect of an aluminum mold under warm pressing. The low flow stress of an aluminum mold is appropriate to apply hydrostatic stress to powder compacts during compaction under high temperature. The suggested powder metallurgy process is very useful under high temperature since copper powder compacts have higher relative density over axial stress of 100 MPa and show more homogeneity as compared with conventional warm pressing. Elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) for densification behavior under warn pressing by using a metal mold. Finite element results agreed well with experimental data for densification and deformation of copper powder compacts in the mold.

A Study on the Behavior during Constructing of Rigid Reinforced Roadbed to apply for the Slab Track (콘크리트궤도용 강성보강노반의 시공 중 거동에 관한 연구)

  • Kim, Ki-Hwan;Kim, Dae-Sang;Park, Seong-Yong;Park, Jong-Sik;Yoo, Chung-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1774-1785
    • /
    • 2011
  • In this paper, Rigid Reinforced Roadbed(RRR) which is expected to have highly applicability to railroad roadbed, was introduced and field tests results were analyzed. Full scale model with 5m height concerning a single track railroad roadbed was constructed. The model had four different sections, which was to assess the effect of geogrid length, spacing, and connection method on deformation characteristics of RRR. Laser displacement meter, earth pressure cell, piezometer, and strain gauge were installed in order to analyze the behavior of reinforced embankment during construction. Horizontal displacements caused by compaction at each section were 20~30% below the displacement limit that of general reinforced retaining wall, which showed that RRR was very stable structure. Maximum tensile strength of reinforcement was withing 10% of the long-term design strength.

  • PDF

Displacement prediction of precast concrete under vibration using artificial neural networks

  • Aktas, Gultekin;Ozerdem, Mehmet Sirac
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.559-565
    • /
    • 2020
  • This paper intends to progress models to accurately estimate the behavior of fresh concrete under vibration using artificial neural networks (ANNs). To this end, behavior of a full scale precast concrete mold was investigated numerically. Experimental study was carried out under vibration with the use of a computer-based data acquisition system. In this study measurements were taken at three points using two vibrators. Transducers were used to measure time-dependent lateral displacements at these points on mold while both mold is empty and full of fresh concrete. Modeling of empty and full mold was made using ANNs. Benefiting ANNs used in this study for modeling fresh concrete, mold design can be performed. For the modeling of ANNs: Experimental data were divided randomly into two parts such as training set and testing set. Training set was used for ANN's learning stage. And the remaining part was used for testing the ANNs. Finally, ANN modeling was compared with measured data. The comparisons show that the experimental data and ANN results are compatible.

Bearing capacity of geotextile-reinforced sand with varying fine fraction

  • Deb, Kousik;Konai, Sanku
    • Geomechanics and Engineering
    • /
    • v.6 no.1
    • /
    • pp.33-45
    • /
    • 2014
  • Use of geotextile as reinforcement material to improve the weak soil is a popular method these days. Tensile strength of geotextile and the soil-geotextile interaction are the major factors which influence the improvement of the soil. Change in fine content within the sand can change the interface behavior between soil and geotextile. In the present paper, the bearing capacity of unreinforced and geotextile-reinforced sand with different percentages of fines has been studied. A series of model tests have been carried out and the load settlement curves are obtained. The ultimate load carrying capacity of unreinforced and reinforced sand with different percentages of fines is compared. The interface behavior of sand and geotextile with various percentages of fines is also studied. It is observed that sand having around 5% of fine is suitable or permissible for bearing capacity improvement due to the application of geosynthetic reinforcement. The effectiveness of the reinforcement in load carrying capacity improvement decreases due to the addition of excessive amount of fines.

Behavior of Geosynthetic-Reinforced Clay (복합보강재를 이용한 보강점성토의 거동)

  • ;Fumio Tatsuoka
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.73-78
    • /
    • 2000
  • The reinforced soil has been widely used for constructing retaining walls and embankment with steep slope. However, the benefits of soil reinforcing are often-restricted by a lack of good quality backfill material. In this study, plane strain compression tests were carried out to study the effects of preloading on the behavior of geosynthetic-reinforced saturated clay. For the unreinforced and reinforced soil, drained and undrained shearing tests were peformed after anisotropic consolidation in a constant strain rate. A preoading test was carried out by preloading, creep, unloading, aging and undrained shearing after anisotropic consolidation(K=0.3, σ'₃=50 kPa). It was observed that a reinforced clay, Kanto loam, can have a great initial secant modulus in undraind condition by well compaction and over consolidation. The results shown that the increasing of drained strength should be used to apply a large preloading in the case of reinforced clay.

  • PDF

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.

Evaluation on the dynamic behavior of gravity quay wall with different relative density of rubble mound from 1-g shaking table tests (1-g 진동대 실험을 통한 사석마운드의 상대밀도에 따른 중력식 안벽의 동적거동 분석)

  • Lee, Yong-Jae;Han, Jin-Tae;Jang, In-Sung;Kim, Myoung-Mo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.82-89
    • /
    • 2005
  • The vibrohammer compaction methods had been applied more and more to the rubble mound lying under the gravity quay wall in Korea. 1g Shaking table tests were performed to evaluate on the dynamic behavior of gravity quay wall with different relative density of rubble mound. The settlements, relative displacements and accelerations of gravity quay wall were measured and analysed.

  • PDF