• Title/Summary/Keyword: compacted materials

Search Result 183, Processing Time 0.025 seconds

Manufacturing Powder Extrusion Die and Experiment for Fabrication of Miniature Helical-Gears (소형 헬리컬 기어 제조를 위한 분말 압출 금형 제작 및 실험)

  • Hwang, D.W.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.283-289
    • /
    • 2010
  • Extrusion process in the bulk material for fabrication of miniature helical gears has problems such as a high forming load and short tool life because the cross-section is complex and asymmetry. To overcome these problems, in this study, miniature helical gears were fabricated by Zn-22Al powder hot extrusion. The included die angle for minimum extrusion load and improving die filling was determined by FE-simulation. The Zn-22Al spheroidal powder produced by gasatomization were compacted and sintered for extrusion experiment. The dimension of helical-gear is 0.3mm in module, 3.35mm in pitch diameter, $15^{\circ}$ in helix angle and the number of teeth is 12. All of the extrusion experiments were performed with internal helical gear die which was machined by precision electric discharge machining using the electrode. The experiment was conducted at $190^{\circ}C$ to $310^{\circ}C$ to obtain extrusive and mechanical properties. The extruded helical gears were analyzed through extrusion load, Vickers hardness and SEM images for each extrusion temperature. The powder hot extrusion process was successfully applied to fabricate a miniature helical gear.

A Study on the Complementary Alloying Design of Wear Resistant CV Graphite Cast Irons (내마모 CV흑연주철의 합금설계)

  • Park, Heung-Il;Kim, Woo-Yeol;Bae, Cha-Hurn;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 1993
  • The effects of alloying elements on the structure and mechanical properties of compacted/vermicular graphite cast irons containing copper, tin and molubdenum for producing pearlite matrix, and also containing phosphorus and boron for increasing wear resistance, were investigated. The Brinell hardness and ultimate tensile strength of the specimens with the range of compositions, [1.5% Cu-0.05% Sn-(0.2-0.4)% Mo-(0.2-0.6)% P-(0.035-0.070)% B], was found to fall within in the following range, depending on their composition; Brinell hardness of BHN 250-315, ultimate tensile strength of $28.1-40.3kg/mm^2$. It was also found within this experiment that CV graphite cast irons possessing higher amount of phosphide eutectic exhibit better wear resistance, but the wear resistance became deteriorate when the area fraction of phosphide eutectics exceed more than 10%. From these experimental results, it could be concluded that the CV graphite cast iron containing 1.5% Cu, 0.05% Sn, 0.4% Mo, 0.2% P and 0.035% B showed good mechanical and wear resistance properties.

  • PDF

Electromagnetic properties of magnetic core materials used in the blocking filter for Power Line Communication (전력선 통신 Blocking filter용 자심 재료의 전자기적 특성)

  • Lee, H.Y.;Kim, H.S.;Huh, J.S.;An, Y.W.;Oh, Y.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.68-71
    • /
    • 2002
  • The electromagnetic properties and thermal behavior of ferrite cores used in the blocking filter for PLC were investigated as a function of additives. The highest density of 4.98 $g/cm^2$ and permeability of 8221 were obtained to the specimen added $MoO_3$ 400 ppm, $SiO_2$ 100 ppm and CaO 200 ppm since the microstructures were compacted through reduction of pores in the specimen. The permeability was increased up to 13094 at $110^{\circ}C$ with increasing temperature of specimen, however, it was decreased precipitously to under 100 over $110^{\circ}C$. The exothermic behavior was observed that the temperature of specimens became $102^{\circ}C$ at 1MHz. In the consequence, the ferrite core developed by this research will maintain the stable electromagnetic properties since the temperature of ferrite core rose to $93^{\circ}C$ in the range of 10kHz to 450kHz bandwidth qualified for PLC.

  • PDF

Rainfall induced instability of mechanically stabilized earth embankments

  • Roy, Debasis;Chiranjeevi, K.;Singh, Raghvendra;Baidya, Dilip K.
    • Geomechanics and Engineering
    • /
    • v.1 no.3
    • /
    • pp.193-204
    • /
    • 2009
  • A 10.4-m high highway embankment retained behind mechanically stabilized earth (MSE) walls is under construction in the northeastern part of the Indian state of Bihar. The structure is constructed with compacted, micaceous, grey, silty sand, reinforced with polyester (PET) geogrids, and faced with reinforced cement concrete fascia panels. The connections between the fascia panels and the geogrids failed on several occasions during the monsoon seasons of 2007 and 2008 following episodes of heavy rainfall, when the embankment was still under construction. However, during these incidents the MSE embankment itself remained by and large stable and the collateral damages were minimal. The observational data during these incidents presented an opportunity to develop and calibrate a simple procedure for estimating rainfall induced pore water pressure development within MSE embankments constructed with backfill materials that do not allow unimpeded seepage. A simple analytical finite element model was developed for the purpose. The modeling results were found to agree with the observational and meteorological records from the site. These results also indicated that the threshold rainwater infiltration flux needed for the development of pore water pressure within an MSE embankment is a monotonically increasing function of the hydraulic conductivity of backfill. Specifically for the MSE embankment upon which this study is based, the analytical results indicated that the instabilities could have been avoided by having in place a chimney drain immediately behind the fascia panels.

The Analysis of Slope Stability on Clay-Fly Ash Mixtures Embankment (점토-Fly Ash 혼합물로 된 제체의 사면안정 해석(지반공학))

  • 권무남;정성욱;김현기
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.477-483
    • /
    • 2000
  • Fly ash is the unburned residue resulting from the combustion of coal in utility and industrial boilers such as thermal power plants. Annually about 5 million tons of fly ash is being produced in korea. Less than 25 percent of total volume of fly ash is currently being used effectively for some ways. In the future, the volume of fly ash discharge from thermal power stations will be increasing more and more, and the development of the utilization of high volume fly ash is required. Fly ash has a lower compacted density and specific gravity than coarse grained natural aggregates but equivalent strength properties indicating that the fly ash could be used as a structural fill materials. So, clay-fly ash mixtures can be used as a fill material in the construction of embankments. Laboratory tests have been carried out to determine the physical, chemical, and geotechnical characteristics of the clay and fly ash. The fly ash is mixed with the clay in different proportions and the geotechnical characteristics of the mixtures have been studied also. In this study describes the results of the experimental study. The implications of the use of clay and clay-fly ash mixtures on the stability of embankments are discussed.

  • PDF

Application of Copper Slag as Sand Substitute in SCP Pilot tests (SCP 현장시험시공을 통한 동슬래그의 모래대체재로서의 적용성 연구)

  • 천병식;정헌철;김경민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.613-620
    • /
    • 2002
  • Sand Compaction Pile(SCP) is a soil improvement method that a sand charge is introduced into the pipe, and the pipe is withdrawn part away while the sand pile is compacted and its diameter is enlarged. The sand used in this method should be of good quality. In Korea, crushed stone and washed sea sand are used frequently in SCP. However, use of these materials is restricted because of environmental problem and deficiency of supply. In the copper smelting process, about 0.7 million tons of copper slag are produced in Korea. The range of particle size distribution of copper slag is from 0.15mm to 5mm, so it can be a substitute for sand, and the relatively high specific gravity compared with the sand, is its characteristic. Copper slag is hyaline and so stable environmentally that in foreign country, such as Japan, Germany etc., it is widely used in harbor, revetment and offshore structure construction works. Therefore, in this study, the several laboratory tests were peformed to evaluate the applicability of copper slag as a substitute for sand of SCP. From the mechanical property test, the characteristics of sand and copper slag were compared and analyzed, and from laboratory model test, the strength of composite ground was compared and analyzed by monitoring the stress and ground settlement of clay, SCP and copper slag compaction pile. Specially, this study focused on the application of copper slag as sand substitute in SCP pilot tests based on laboratory tests results.

  • PDF

Closed-die Compaction of AZO Powder for FE Simulation of Powder Compaction (압분공정의 유한요소 해석을 위한 AZO 분말의 Closed-die Compaction 실험)

  • Kim, Y.B.;Lee, J.S.;Lee, S.M.;Park, H.J.;Lee, G.A.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.228-233
    • /
    • 2012
  • In this study, powder compaction of AZO (alumina doped zinc oxide) powder was performed with a MTS 810 test system using a cylindrical die having a diameter of 10mm. Pressure-density curves were measured based on the load cell and displacement of the punch. The AZO powder compacts with various densities were formed to investigate the mechanical properties such as fracture stress of the AZO powder as a function of the compact density. Two types of compression tests were conducted in order to estimate the fracture stress using different loading paths: a diameteral compression test and a uniaxial compression test. The pressure-density curves of the AZO powder were obtained and the fracture stress of the compacted powders with various densities was estimated. The results show that the compact pressure dramatically increases as the density increases. Based on the experimental results, calibration of the modified Drucker-Prager/Cap model of the AZO powder for use in FE simulations was developed.

Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve (선회다짐곡선특성을 이용한 노상토의 다짐도 평가)

  • Lee, Kwan-Ho;Cha, Min-Kyung;Lim, Yu-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2009
  • Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

Effect of degree of compaction & confining stress on instability behavior of unsaturated soil

  • Rasool, Ali Murtaza
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.219-231
    • /
    • 2022
  • Geotechnical materials such as silt, fine sand, or coarse granular soils may be unstable under undrained shearing or during rainfall infiltration starting an unsaturated state. Some researches are available describing the instability of coarse granular soils in drained or undrained conditions. However, there is a need to investigate the instability mechanism of unsaturated silty soil considering the effect of degree of compaction and net confining stress under partially and fully drained conditions. The specimens in the current study are compacted at 65%, 75%, & 85% degree of compaction, confined at pressures of 60, 80 & 120 kPa, and tested in partially and fully drained conditions. The tests have been performed in two steps. In Step-I, the specimens were sheared in constant water content conditions (a type of partially drained test) to the maximum shear stress. In Step-II, shearing was carried in constant suction conditions (a type of fully undrained test) by keeping shear stress constant. At the start of Step-II, PWP was increased in steps to decrease matric suction (which was then kept constant) and start water infiltration. The test results showed that soil instability is affected much by variation in the degree of compaction and confining stresses. It is also observed that loose and medium dense soils are vulnerable to pre-failure instability i.e., instability occurs before reaching the failure state, whereas, instability in dense soils instigates together with the failure i.e., failure line (FL) and instability line (IL) are found to be unique.

Estimation of Air Voids of Asphalt Concrete Using Non-destructive Density Testing (비파괴 밀도시험을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Na, Il-ho;Lee, Sung-Jin;Yoon, Ji-Hyeon;Kim, Kwang-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.111-119
    • /
    • 2018
  • The air-void is known to be one of the influencing factors for estimating long-term performance of asphalt concrete. Most of all, confirming air void or density of pavement layer is important for quality control of field compaction level of asphalt concrete pavement. In this study, a non-nuclear type non-destructive density gage (NDDG) was used to estimate compacted air-voids of asphalt pavement as a non-destructive test method. Asphalt concrete slab specimens were prepared using 6 types of asphalt mixes in laboratory (lab) for lab NDDG test. Four different base structure materials were used to find out if there were any differences due to the type of base structure materials. The actual air-voids and NDDG air-voids were measured from 6 asphalt concrete slabs. Four sections of field asphalt pavements were tested using the NDDG, and actual air voids were also measured from field cores taken from the site where the NDDG air-void was measured. From lab and field experimental tests, it was found that the air-voids obtained by NDDG were not the same as the actual air-voids measured from the asphalt concrete specimen. However, it was possible to estimate air voids based on the relationship obtained from regression analysis between actual and NDDG air voids. The predicted air-voids based on the NDDG air-voids obtained from 50mm depth were found to be reliable levels with $R^2{\fallingdotseq}0.9$. Therefore, it was concluded that the air-voids obtained from NDDG could be used to estimate actual air-voids in the field asphalt pavement with a relatively high coefficient of determination.