• 제목/요약/키워드: compact space

검색결과 819건 처리시간 0.032초

Theoretical Analyses of Autothermal Reforming Methanol for Use in Fuel Cell

  • Wang Hak-Min;Choi Kap-Seung;Kang Il-Hwan;Kim Hyung-Man;Erickson Paul A.
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.864-873
    • /
    • 2006
  • As fuel cells approach commercialization, hydrogen production becomes a critical step in the overall energy conversion pathway. Reforming is a process that produces a hydrogen-rich gas from hydrocarbon fuels. Hydrogen production via autothermal reforming (ATR) is particularly attractive for applications that demand a quick start-up and response time in a compact size. However, further research is required to optimize the performance of autothermal reformers and accurate models of reactor performance must be developed and validated. The design includes the requirement of accommodating a wide range of experimental set ups. Factors considered in the design of the reformer are capability to use multiple fuels, ability to vary stoichiometry, precise temperature and pressure control, implementation of enhancement methods, capability to implement variable catalyst positions and catalyst arrangement, ability to monitor and change reactant mixing, and proper implementation of data acquisition. A model of the system was first developed in order to calculate flowrates, heating, space velocity, and other important parameters needed to select the hardware that comprises the reformer. Predicted performance will be compared to actual data once the reformer construction is completed. This comparison will quantify the accuracy of the model and should point to areas where further model development is required. The end result will be a research tool that allows engineers to optimize hydrogen production via autothermal reformation.

ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS

  • Ghane, Fatemeh H.;Sarkooh, Javad Nazarian
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1561-1597
    • /
    • 2019
  • In this paper we introduce the notions of topological entropy and topological pressure for non-autonomous iterated function systems (or NAIFSs for short) on countably infinite alphabets. NAIFSs differ from the usual (autonomous) iterated function systems, they are given [32] by a sequence of collections of continuous maps on a compact topological space, where maps are allowed to vary between iterations. Several basic properties of topological pressure and topological entropy of NAIFSs are provided. Especially, we generalize the classical Bowen's result to NAIFSs ensures that the topological entropy is concentrated on the set of nonwandering points. Then, we define the notion of specification property, under which, the NAIFSs have positive topological entropy and all points are entropy points. In particular, each NAIFS with the specification property is topologically chaotic. Additionally, the ${\ast}$-expansive property for NAIFSs is introduced. We will prove that the topological pressure of any continuous potential can be computed as a limit at a definite size scale whenever the NAIFS satisfies the ${\ast}$-expansive property. Finally, we study the NAIFSs induced by expanding maps. We prove that these NAIFSs having the specification and ${\ast}$-expansive properties.

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS

  • Barzanouni, Ali
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.951-965
    • /
    • 2019
  • Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.

λ/64-spaced compact ESPAR antenna via analog RF switches for a single RF chain MIMO system

  • Lee, Jung-Nam;Lee, Yong-Ho;Lee, Kwang-Chun;Kim, Tae Joong
    • ETRI Journal
    • /
    • 제41권4호
    • /
    • pp.536-548
    • /
    • 2019
  • In this study, an electronically steerable parasitic array radiator (ESPAR) antenna via analog radio frequency (RF) switches for a single RF chain MIMO system is presented. The proposed antenna elements are spaced at ${\lambda}/64$, and the antenna size is miniaturized via a dielectric radome. The optimum reactance load value is calculated via the beamforming load search algorithm. A switch simplifies the design and implementation of the reactance loads and does not require additional complex antenna matching circuits. The measured impedance bandwidth of the proposed ESPAR antenna is 1,500 MHz (1.75 GHz-3.25 GHz). The proposed antenna exhibits a beam pattern that is reconfigurable at 2.48 GHz due to changes in the reactance value, and the measured peak antenna gain is 4.8 dBi. The reception performance is measured by using a $4{\times}4$ BPSK signal. The measured average SNR is 17 dB when using the proposed ESPAR antenna as a transmitter, and the average SNR is 16.7 dB when using a four-conventional monopole antenna.

탁상용 소형 사출 성형기 개발 (Developed Compact Injection Molding Machine for Desktop)

  • 이병호;신동화
    • 한국산업융합학회 논문집
    • /
    • 제21권5호
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

Parametric analyses for the design of a closed-loop passive containment cooling system

  • Bang, Jungjin;Hwang, Ji-Hwan;Kim, Han Gon;Jerng, Dong-Wook
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1134-1145
    • /
    • 2021
  • A design parameter study is presented for the closed-loop type passive containment cooling system (PCCS) which is equipped with two heat exchangers: one installed at the inside of the containment and the other submerged in the water pool at the outside of the containment. A GOTHIC code model for PCCS performance analyses was set up and the design parameters such as the heat exchanger sizes, locations, and water pool tank volumes were analyzed to investigate the feasibility of installing this type of PCCS in PWRs like OPR-1000 being operated in Korea. We identified the size of the circulation loop and heat exchangers as major design parameters affecting the performance of PCCS. The analyses showed that the heat exchangers in the inside of the containment would be more influential on the heat removal capability of PCCS than that installed in the water pool at the outside of the containment. Hence, it was recommended to down-size the heat exchangers in the water pool to optimize PCCS without compromising its performance. Based on the parametric study, it was demonstrated that a closed-loop type PCCS could be designed sufficiently compact for installation in the available space within the containment of PWRs like OPR-1000.

Improved Dynamic Programming in Local Linear Approximation Based on a Template in a Lightweight ECG Signal-Processing Edge Device

  • Lee, Seungmin;Park, Daejin
    • Journal of Information Processing Systems
    • /
    • 제18권1호
    • /
    • pp.97-114
    • /
    • 2022
  • Interest is increasing in electrocardiogram (ECG) signal analysis for embedded devices, creating the need to develop an algorithm suitable for a low-power, low-memory embedded device. Linear approximation of the ECG signal facilitates the detection of fiducial points by expressing the signal as a small number of vertices. However, dynamic programming, a global optimization method used for linear approximation, has the disadvantage of high complexity using memoization. In this paper, the calculation area and memory usage are improved using a linear approximated template. The proposed algorithm reduces the calculation area required for dynamic programming through local optimization around the vertices of the template. In addition, it minimizes the storage space required by expressing the time information using the error from the vertices of the template, which is more compact than the time difference between vertices. When the length of the signal is L, the number of vertices is N, and the margin tolerance is M, the spatial complexity improves from O(NL) to O(NM). In our experiment, the linear approximation processing time was 12.45 times faster, from 18.18 ms to 1.46 ms on average, for each beat. The quality distribution of the percentage root mean square difference confirms that the proposed algorithm is a stable approximation.

Multiepoch Optical Images of IRC+10216 Tell about the Central Star and the Adjacent Environment

  • Kim, Hyosun;Lee, Ho-Gyu;Ohyama, Youichi;Kim, Ji Hoon;Scicluna, Peter;Chu, You-Hua;Mauron, Nicolas;Ueta, Toshiya
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.36.1-37
    • /
    • 2021
  • Six images of IRC+10216 taken by the Hubble Space Telescope at three epochs in 2001, 2011, and 2016 are compared in the rest frame of the central carbon star. An accurate astrometry has been achieved with the help of Gaia Data Release 2. The positions of the carbon star in the individual epochs are determined using its known proper motion, defining the rest frame of the star. In 2016, a local brightness peak with compact and red nature is detected at the stellar position. A comparison of the color maps between 2016 and 2011 epochs reveals that the reddest spot moved along with the star, suggesting a possibility of its being the dusty material surrounding the carbon star. Relatively red, ambient region is distributed in an Ω shape and well corresponds to the dusty disk previously suggested based on near-infrared polarization observations. In a larger scale, differential proper motion of multiple ring-like pattern in the rest frame of the star is used to derive the average expansion velocity of transverse wind components, resulting in ~12.5 km s-1 (d/123 pc), where d is the distance to IRC+10216. Three dimensional geometry is implied from its comparison with the line-of-sight wind velocity determined from half-widths of submillimeter emission line profiles of abundant molecules. Uneven temporal variations in brightness for different searchlight beams and anisotropic distribution of extended halo are revisited in the context of the stellar light illumination through a porous envelope with postulated longer-term variations for a period of 10 years.

  • PDF

Kennicutt-Schmidt law with H I velocity profile decomposition in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.32.3-33
    • /
    • 2021
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~ 490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into bulk-narrow, bulk-broad, and non_bulk with respect to their velocity and velocity dispersion. We correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The bulk-narrow component that resides within r25 is likely to follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Optical Design and Tolerance Analysis for UVO-Multiband Polarizing Imager System

  • Han, Jimin;Chang, Seunghyuk;Park, Woojin;Lee, Sunwoo;Ahn, Hojae;Kim, Geon Hee;Lee, Dae-Hee;Pak, Soojong
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.68.2-68.2
    • /
    • 2020
  • UVO-Multiband Polarizing Imager System (UVOMPIS) is an ultraviolet to visible light multi-wavelength polarization/imaging system for Compact Advanced Satellite. We developed Linear Astigmatism Free-Three Mirror System (LAF-TMS) D200F2 as an optical system of UVOMPIS which has an entrance pupil diameter of 200 mm, a focal ratio of 2, a field of view of 2° × 4°. LAF-TMS is a confocal off-axis reflecting telescope system that removes linear astigmatism, and its all mirrors (M1, M2, M3) are optimized with the freeform surface to reduce high-order aberrations. Through the sensitivity analysis and Monte-Carlo simulation as the tolerance analysis, we can confirm the feasibility of the system, relatively sensitive parameters (tilt, decenter, despace, surface RMS error), and considerations for optomechanical design. From the sensitivity analysis, we can discover the relatively sensitive optical alignment parameters to a single perturbation. Further more, in the monte-carlo simulation, we investigate the minimum tolerance budget satisfying the required optical performance and whether the tolerance range is satisfied within manufacturing error.

  • PDF