References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. https://doi.org/10.2307/1994177
- L. Alseda, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. https://doi.org/10.1142/1980
- A. Bis, Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst. 11 (2004), no. 2-3, 639-648. https://doi.org/10.3934/dcds.2004.11.639
- A. Bis, An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 3, 839-863. https://doi.org/10.5802/aif.2778
- A. Bis and M. Urbanski, Some remarks on topological entropy of a semigroup of con tinuous maps, Cubo 8 (2006), no. 2, 63-71.
- L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/BFb0084762
- T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semi ows, J. Differential Equations 267 (2019), no. 1, 228-266. https://doi.org/10.1016/j.jde.2019.01.010
- R. Bowen, Topological entropy and axiom A, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 23-41, Amer. Math. Soc., Providence, RI, 1970.
- R. Bowen Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. https://doi.org/10.2307/1995565
- R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136. https://doi.org/10.2307/1996403
- R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 1975.
- R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181-202. https://doi.org/10.1007/BF01389848
- D. Burago, Semi-dispersing billiards of infinite topological entropy, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 45-52. https://doi.org/10.1017/S0143385704001002
- E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv. 5 (1971), no. 2, 337-378. https://doi.org/10.1070/IM1971v005n02ABEH001050
- T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc. 142 (2014), no. 1, 137-149. https://doi.org/10.1090/S0002-9939-2013-11717-X
- E. Eberlein, On topological entropy of semigroups of commuting transformations, in International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), 17-62. Asterisque, 40, Soc. Math. France, Paris, 1976.
- L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), no. 3, 679-688. https://doi.org/10.2307/2036610
- B. Hasselblatt, Z. Nitecki, and J. Propp, Topological entropy for nonuniformly continuous maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 201-213. https://doi.org/10.3934/dcds.2008.22.201
- A. M. Henderson, E. J. Olsony, J. C. Robinsonz, and N. Sharplesx, Equi-homogeneity, Assouad Dimension and Non-autonomous Dynamics, https://arxiv.org/abs/1409.4659.
- W. Huang and Y. Yi, A local variational principle of pressure and its applications to equilibrium states, Israel J. Math. 161 (2007), no. 1, 29-74. https://doi.org/10.1007/s11856-007-0071-1
- X. Huang, X. Wen, and F. Zeng, Topological pressure of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43-48.
- P. E. Kloeden, Synchronization of nonautonomous dynamical systems, Electron. J. Differential Equations 2003 (2003), no. 39, 10 pp.
- P. E. Kloeden, Nonautonomous attractors of switching systems, Dyn. Syst. 21 (2006), no. 2, 209-230. https://doi.org/10.1080/14689360500446262
- S. Kolyada and Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233.
- D. Ma and M. Wu, Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst. 31 (2011), no. 2, 545-557. https://doi.org/10.3934/dcds.2011.31.545
- J. Nazarian Sarkooh and F. H. Ghane, Specification and thermodynamic properties of non-autonomous dynamical systems, https://arxiv.org/abs/1712.06109.
- E. J. Olson, J. C. Robinson, and N. Sharples, Generalised Cantor sets and the dimension of products, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 1, 51-75. https://doi.org/10.1017/S0305004115000584
- Y. B. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys 43 (1988), no. 4, 111-151. https://doi.org/10.1070/RM1988v043n04ABEH001892
- Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. https://doi.org/10.7208/chicago/9780226662237.001.0001
- Y. B. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50-63, 96. https://doi.org/10.1007/BF01076363
- M. Rasmussen, A. Hastings, M. J. Smith, F. B. Agusto, B. M. Chen-Charpentier, F. M. Hoffman, J. Jiang, K. E. O. Todd-Brown, Y. Wang, Y. P. Wang, and Y. Luo, Tran-sit times and mean ages for nonautonomous and autonomous compartmental systems, J. Math. Biol. 73 (2016), no. 6-7, 1379-1398. https://doi.org/10.1007/s00285-016-0990-8
- L. Rempe-Gillen and M. Urbanski, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1979-2017. https://doi.org/10.1090/tran/6490
- J. C. Robinson and N. Sharples, Strict inequality in the box-counting dimension product formulas, Real Anal. Exchange 38 (2012/13), no. 1, 95-119. http://projecteuclid.org/euclid.rae/1367265642
- F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys. 57 (2016), no. 5, 052704, 27 pp. https://doi.org/10.1063/1.4950928
-
D. Ruelle, Statistical mechanics on a compact set with
${\mathbb{Z}^v$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237-251. https://doi.org/10.2307/1996437 - D. Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619-654. https://doi.org/10.2307/2373810
- H. Shao, Y. Shi, and H. Zhu, Estimations of topological entropy for non-autonomous discrete systems, J. Difference Equ. Appl. 22 (2016), no. 3, 474-484. https://doi.org/10.1080/10236198.2015.1107055
- Ja. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21-64.
- N. Sumi, P. Varandas, and K. Yamamoto, Partial hyperbolicity and specification, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1161-1170. https://doi.org/10.1090/proc/12830
- J. Tang, B. Li, and W.-C. Cheng, Some properties on topological entropy of free semigroup action, Dyn. Syst. 33 (2018), no. 1, 54-71. https://doi.org/10.1080/14689367.2017.1298724
- D. J. Thompson, A thermodynamic definition of topological pressure for non-compact sets, Ergodic Theory Dynam. Systems 31 (2011), no. 2, 527-547. https://doi.org/10.1017/S0143385709001151
- D. J. Thompson, Irregular sets, the fi-transformation and the almost specification property, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5395-5414. https://doi.org/10.1090/S0002-9947-2012-05540-1
- M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, 151, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316422601
- P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.
- K. Yamamoto, On the weaker forms of the specification property and their applications, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3807-3814. https://doi.org/10.1090/S0002-9939-09-09937-7
- F. Zeng, K. Yan, and G. Zhang, Pre-image pressure and invariant measures, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 1037-1052. https://doi.org/10.1017/S0143385706000812