DOI QR코드

DOI QR Code

ON TOPOLOGICAL ENTROPY AND TOPOLOGICAL PRESSURE OF NON-AUTONOMOUS ITERATED FUNCTION SYSTEMS

  • Ghane, Fatemeh H. (Department of Mathematics Ferdowsi University of Mashhad) ;
  • Sarkooh, Javad Nazarian (Department of Mathematics Ferdowsi University of Mashhad)
  • Received : 2018.11.21
  • Accepted : 2019.05.14
  • Published : 2019.11.01

Abstract

In this paper we introduce the notions of topological entropy and topological pressure for non-autonomous iterated function systems (or NAIFSs for short) on countably infinite alphabets. NAIFSs differ from the usual (autonomous) iterated function systems, they are given [32] by a sequence of collections of continuous maps on a compact topological space, where maps are allowed to vary between iterations. Several basic properties of topological pressure and topological entropy of NAIFSs are provided. Especially, we generalize the classical Bowen's result to NAIFSs ensures that the topological entropy is concentrated on the set of nonwandering points. Then, we define the notion of specification property, under which, the NAIFSs have positive topological entropy and all points are entropy points. In particular, each NAIFS with the specification property is topologically chaotic. Additionally, the ${\ast}$-expansive property for NAIFSs is introduced. We will prove that the topological pressure of any continuous potential can be computed as a limit at a definite size scale whenever the NAIFS satisfies the ${\ast}$-expansive property. Finally, we study the NAIFSs induced by expanding maps. We prove that these NAIFSs having the specification and ${\ast}$-expansive properties.

Keywords

References

  1. R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319. https://doi.org/10.2307/1994177
  2. L. Alseda, J. Llibre, and M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Advanced Series in Nonlinear Dynamics, 5, World Scientific Publishing Co., Inc., River Edge, NJ, 1993. https://doi.org/10.1142/1980
  3. A. Bis, Entropies of a semigroup of maps, Discrete Contin. Dyn. Syst. 11 (2004), no. 2-3, 639-648. https://doi.org/10.3934/dcds.2004.11.639
  4. A. Bis, An analogue of the variational principle for group and pseudogroup actions, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 3, 839-863. https://doi.org/10.5802/aif.2778
  5. A. Bis and M. Urbanski, Some remarks on topological entropy of a semigroup of con tinuous maps, Cubo 8 (2006), no. 2, 63-71.
  6. L. S. Block and W. A. Coppel, Dynamics in One Dimension, Lecture Notes in Mathematics, 1513, Springer-Verlag, Berlin, 1992. https://doi.org/10.1007/BFb0084762
  7. T. Bomfim and P. Varandas, The gluing orbit property, uniform hyperbolicity and large deviations principles for semi ows, J. Differential Equations 267 (2019), no. 1, 228-266. https://doi.org/10.1016/j.jde.2019.01.010
  8. R. Bowen, Topological entropy and axiom A, in Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), 23-41, Amer. Math. Soc., Providence, RI, 1970.
  9. R. Bowen Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401-414. https://doi.org/10.2307/1995565
  10. R. Bowen, Topological entropy for noncompact sets, Trans. Amer. Math. Soc. 184 (1973), 125-136. https://doi.org/10.2307/1996403
  11. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer-Verlag, Berlin, 1975.
  12. R. Bowen and D. Ruelle, The ergodic theory of Axiom A flows, Invent. Math. 29 (1975), no. 3, 181-202. https://doi.org/10.1007/BF01389848
  13. D. Burago, Semi-dispersing billiards of infinite topological entropy, Ergodic Theory Dynam. Systems 26 (2006), no. 1, 45-52. https://doi.org/10.1017/S0143385704001002
  14. E. I. Dinaburg, On the relations among various entropy characteristics of dynamical systems, Math. USSR Izv. 5 (1971), no. 2, 337-378. https://doi.org/10.1070/IM1971v005n02ABEH001050
  15. T. Downarowicz, Positive topological entropy implies chaos DC2, Proc. Amer. Math. Soc. 142 (2014), no. 1, 137-149. https://doi.org/10.1090/S0002-9939-2013-11717-X
  16. E. Eberlein, On topological entropy of semigroups of commuting transformations, in International Conference on Dynamical Systems in Mathematical Physics (Rennes, 1975), 17-62. Asterisque, 40, Soc. Math. France, Paris, 1976.
  17. L. W. Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), no. 3, 679-688. https://doi.org/10.2307/2036610
  18. B. Hasselblatt, Z. Nitecki, and J. Propp, Topological entropy for nonuniformly continuous maps, Discrete Contin. Dyn. Syst. 22 (2008), no. 1-2, 201-213. https://doi.org/10.3934/dcds.2008.22.201
  19. A. M. Henderson, E. J. Olsony, J. C. Robinsonz, and N. Sharplesx, Equi-homogeneity, Assouad Dimension and Non-autonomous Dynamics, https://arxiv.org/abs/1409.4659.
  20. W. Huang and Y. Yi, A local variational principle of pressure and its applications to equilibrium states, Israel J. Math. 161 (2007), no. 1, 29-74. https://doi.org/10.1007/s11856-007-0071-1
  21. X. Huang, X. Wen, and F. Zeng, Topological pressure of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory 8 (2008), no. 1, 43-48.
  22. P. E. Kloeden, Synchronization of nonautonomous dynamical systems, Electron. J. Differential Equations 2003 (2003), no. 39, 10 pp.
  23. P. E. Kloeden, Nonautonomous attractors of switching systems, Dyn. Syst. 21 (2006), no. 2, 209-230. https://doi.org/10.1080/14689360500446262
  24. S. Kolyada and Snoha, Topological entropy of nonautonomous dynamical systems, Random Comput. Dynam. 4 (1996), no. 2-3, 205-233.
  25. D. Ma and M. Wu, Topological pressure and topological entropy of a semigroup of maps, Discrete Contin. Dyn. Syst. 31 (2011), no. 2, 545-557. https://doi.org/10.3934/dcds.2011.31.545
  26. J. Nazarian Sarkooh and F. H. Ghane, Specification and thermodynamic properties of non-autonomous dynamical systems, https://arxiv.org/abs/1712.06109.
  27. E. J. Olson, J. C. Robinson, and N. Sharples, Generalised Cantor sets and the dimension of products, Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 1, 51-75. https://doi.org/10.1017/S0305004115000584
  28. Y. B. Pesin, Dimension type characteristics for invariant sets of dynamical systems, Russian Math. Surveys 43 (1988), no. 4, 111-151. https://doi.org/10.1070/RM1988v043n04ABEH001892
  29. Y. B. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. https://doi.org/10.7208/chicago/9780226662237.001.0001
  30. Y. B. Pesin and B. S. Pitskel, Topological pressure and the variational principle for noncompact sets, Funktsional. Anal. i Prilozhen. 18 (1984), no. 4, 50-63, 96. https://doi.org/10.1007/BF01076363
  31. M. Rasmussen, A. Hastings, M. J. Smith, F. B. Agusto, B. M. Chen-Charpentier, F. M. Hoffman, J. Jiang, K. E. O. Todd-Brown, Y. Wang, Y. P. Wang, and Y. Luo, Tran-sit times and mean ages for nonautonomous and autonomous compartmental systems, J. Math. Biol. 73 (2016), no. 6-7, 1379-1398. https://doi.org/10.1007/s00285-016-0990-8
  32. L. Rempe-Gillen and M. Urbanski, Non-autonomous conformal iterated function systems and Moran-set constructions, Trans. Amer. Math. Soc. 368 (2016), no. 3, 1979-2017. https://doi.org/10.1090/tran/6490
  33. J. C. Robinson and N. Sharples, Strict inequality in the box-counting dimension product formulas, Real Anal. Exchange 38 (2012/13), no. 1, 95-119. http://projecteuclid.org/euclid.rae/1367265642
  34. F. B. Rodrigues and P. Varandas, Specification and thermodynamical properties of semigroup actions, J. Math. Phys. 57 (2016), no. 5, 052704, 27 pp. https://doi.org/10.1063/1.4950928
  35. D. Ruelle, Statistical mechanics on a compact set with ${\mathbb{Z}^v$ action satisfying expansiveness and specification, Trans. Amer. Math. Soc. 187 (1973), 237-251. https://doi.org/10.2307/1996437
  36. D. Ruelle, A measure associated with axiom-A attractors, Amer. J. Math. 98 (1976), no. 3, 619-654. https://doi.org/10.2307/2373810
  37. H. Shao, Y. Shi, and H. Zhu, Estimations of topological entropy for non-autonomous discrete systems, J. Difference Equ. Appl. 22 (2016), no. 3, 474-484. https://doi.org/10.1080/10236198.2015.1107055
  38. Ja. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), no. 4(166), 21-64.
  39. N. Sumi, P. Varandas, and K. Yamamoto, Partial hyperbolicity and specification, Proc. Amer. Math. Soc. 144 (2016), no. 3, 1161-1170. https://doi.org/10.1090/proc/12830
  40. J. Tang, B. Li, and W.-C. Cheng, Some properties on topological entropy of free semigroup action, Dyn. Syst. 33 (2018), no. 1, 54-71. https://doi.org/10.1080/14689367.2017.1298724
  41. D. J. Thompson, A thermodynamic definition of topological pressure for non-compact sets, Ergodic Theory Dynam. Systems 31 (2011), no. 2, 527-547. https://doi.org/10.1017/S0143385709001151
  42. D. J. Thompson, Irregular sets, the fi-transformation and the almost specification property, Trans. Amer. Math. Soc. 364 (2012), no. 10, 5395-5414. https://doi.org/10.1090/S0002-9947-2012-05540-1
  43. M. Viana and K. Oliveira, Foundations of Ergodic Theory, Cambridge Studies in Advanced Mathematics, 151, Cambridge University Press, Cambridge, 2016. https://doi.org/10.1017/CBO9781316422601
  44. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York, 1982.
  45. K. Yamamoto, On the weaker forms of the specification property and their applications, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3807-3814. https://doi.org/10.1090/S0002-9939-09-09937-7
  46. F. Zeng, K. Yan, and G. Zhang, Pre-image pressure and invariant measures, Ergodic Theory Dynam. Systems 27 (2007), no. 3, 1037-1052. https://doi.org/10.1017/S0143385706000812