• 제목/요약/키워드: compact metric space

검색결과 95건 처리시간 0.023초

AVERAGE SHADOWING PROPERTIES ON COMPACT METRIC SPACES

  • Park Jong-Jin;Zhang Yong
    • 대한수학회논문집
    • /
    • 제21권2호
    • /
    • pp.355-361
    • /
    • 2006
  • We prove that if a continuous surjective map f on a compact metric space X has the average shadowing property, then every point x is chain recurrent. We also show that if a homeomorphism f has more than two fixed points on $S^1$, then f does not satisfy the average shadowing property. Moreover, we construct a homeomorphism on a circle which satisfies the shadowing property but not the average shadowing property. This shows that the converse of the theorem 1.1 in [6] is not true.

ON COMPACT GENERIC SUBMANIFOLDS IN A SASAKIAN SPACE FORM

  • SUNG-BAIK LEE;NAM-GIL KIM;SEUNG-GOOK HAN;IN-YEONG YOO
    • 대한수학회논문집
    • /
    • 제9권2호
    • /
    • pp.401-409
    • /
    • 1994
  • One of typical submanifolds of a Sasakian manifold is the so-called generic submanifolds which are defined as follows: Let M be a submanifold of a Sasakian manifold M with almost contact metric structure (ø, G, ξ) such that M is tangent to the structure vector ξ. If each normal space is mapped into the tangent space under the action of ø, M is called a generic submanifold of M [2], [8].(omitted)

  • PDF

SOME SHADOWING PROPERTIES OF THE SHIFTS ON THE INVERSE LIMIT SPACES

  • Tsegmid, Nyamdavaa
    • 충청수학회지
    • /
    • 제31권4호
    • /
    • pp.461-466
    • /
    • 2018
  • $Let\;f:X{\rightarrow}X$ be a continuous surjection of a compact metric space X and let ${\sigma}_f:X_f{\rightarrow}X_f$ be the shift map on the inverse limit space $X_f$ constructed by f. We show that if a continuous surjective map f has some shadowing properties: the asymptotic average shadowing property, the average shadowing property, the two side limit shadowing property, then ${\sigma}_f$ also has the same properties.

GRADIENT EINSTEIN-TYPE CONTACT METRIC MANIFOLDS

  • Kumara, Huchchappa Aruna;Venkatesha, Venkatesha
    • 대한수학회논문집
    • /
    • 제35권2호
    • /
    • pp.639-651
    • /
    • 2020
  • Consider a gradient Einstein-type metric in the setting of K-contact manifolds and (κ, µ)-contact manifolds. First, it is proved that, if a complete K-contact manifold admits a gradient Einstein-type metric, then M is compact, Einstein, Sasakian and isometric to the unit sphere 𝕊2n+1. Next, it is proved that, if a non-Sasakian (κ, µ)-contact manifolds admits a gradient Einstein-type metric, then it is flat in dimension 3, and for higher dimension, M is locally isometric to the product of a Euclidean space 𝔼n+1 and a sphere 𝕊n(4) of constant curvature +4.