• Title/Summary/Keyword: commuting maps

Search Result 20, Processing Time 0.02 seconds

WEAKER FORMS OF COMMUTING MAPS AND EXISTENCE OF FIXED POINTS

  • Singh, S.L.;Tomar, Anita
    • The Pure and Applied Mathematics
    • /
    • v.10 no.3
    • /
    • pp.145-161
    • /
    • 2003
  • Weak commutativity of a pair of maps was introduced by Sessa [On a weak commutativity condition of mappings in fixed point considerations. Publ. Inst. Math. (Beograd) (N.S.) 32(40) (1982),149-153] in fixed point considerations. Thereafter a number of generalizations of this notion has been obtained. The purpose of this paper is to present a brief development of weaker forms of commuting maps, and to obtain two fixed point theorems for noncommuting and noncontinuous maps on noncomplete metric spaces.

  • PDF

COMPOUND-COMMUTING ADDITIVE MAPS ON MATRIX SPACES

  • Chooi, Wai Leong
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.83-104
    • /
    • 2011
  • In this note, compound-commuting additive maps on matrix spaces are studied. We show that compound-commuting additive maps send rank one matrices to matrices of rank less than or equal to one. By using the structural results of rank-one nonincreasing additive maps, we characterize compound-commuting additive maps on four types of matrices: triangular matrices, square matrices, symmetric matrices and Hermitian matrices.

COMMON FIXED POINT RESULTS FOR NON-COMPATIBLE R-WEAKLY COMMUTING MAPPINGS IN PROBABILISTIC SEMIMETRIC SPACES USING CONTROL FUNCTIONS

  • Das, Krishnapada
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.629-643
    • /
    • 2019
  • In common fixed point problems in metric spaces several versions of weak commutativity have been considered. Mappings which are not compatible have also been discussed in common fixed point problems. Here we consider common fixed point problems of non-compatible and R-weakly commuting mappings in probabilistic semimetric spaces with the help of a control function. This work is in line with research in probabilistic fixed point theory using control functions. Further we support our results by examples.

FIXED POINT THEOREMS VIA FAMILY OF MAPS IN WEAK NON-ARCHIMEDEAN MENGER PM-SPACES

  • Singh, Deepak;Ahmed, Amin
    • The Pure and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.181-198
    • /
    • 2013
  • C. Vetro [4] gave the concept of weak non-Archimedean in fuzzy metric space. Using the same concept for Menger PM spaces, Mishra et al. [22] proved the common fixed point theorem for six maps, Also they introduced semi-compatibility. In this paper, we generalized the theorem [22] for family of maps and proved the common fixed point theorems using the pair of semi-compatible and reciprocally continuous maps for one pair and R-weakly commuting maps for another pair in Menger WNAPM-spaces. Our results extends and generalizes several known results in metric spaces, probabilistic metric spaces and the similar spaces.

LINEAR MAPS THAT PRESERVE COMMUTING PAIRS OF MATRICES OVER GENERAL BOOLEAN ALGEBRA

  • SONG SEOK-ZUN;KANG KYUNG-TAE
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.77-86
    • /
    • 2006
  • We consider the set of commuting pairs of matrices and their preservers over binary Boolean algebra, chain semiring and general Boolean algebra. We characterize those linear operators that preserve the set of commuting pairs of matrices over a general Boolean algebra and a chain semiring.

FIXED POINTS OF CONVERSE COMMUTING MAPPINGS USING AN IMPLICIT RELATION

  • Chauhan, Sunny;Khan, M. Alamgir;Sintunavarat, Wutiphol
    • Honam Mathematical Journal
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2013
  • In the present paper, we utilize the notion of converse commuting mappings due to L$\ddot{u}$ [On common fixed points for converse commuting self-maps on a metric spaces, Acta. Anal. Funct. Appl. 4(3) (2002), 226-228] and prove a common fixed point theorem in Menger space using an implicit relation. We also give an illustrative example to support our main result.

ON (α,β)-SKEW-COMMUTING AND (α,β)-SKEW-CENTRALIZING MAPS IN RINGS WITH LEFT IDENTITY

  • JUNG, YONG-SOO;CHANG, ICK-SOON
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.23-34
    • /
    • 2005
  • Let R be a ring with left identity. Let G : $R{\times}R{\to}R$ be a symmetric biadditive mapping and g the trace of G. Let ${\alpha}\;:\;R{\to}R$ be an endomorphism and ${\beta}\;:\;R{\to}R$ an epimorphism. In this paper we show the following: (i) Let R be 2-torsion-free. If g is (${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (ii) If g is (${\beta},{\beta}$)-skew-centralizing on R, then g is (${\beta},{\beta}$)-commuting on R. (iii) Let $n{\ge}2$. Let R be (n+1)!-torsion-free. If g is n-(${\alpha},{\beta}$)-skew-commuting on R, then we have G = 0. (iv) Let R be 6-torsion-free. If g is 2-(${\alpha},{\beta}$)-commuting on R, then g is (${\alpha},{\beta}$)-commuting on R.

TRIVIALITY OF A TRACE ON THE SPACE OF COMMUTING TRACE-CLASS SELF-ADJOINT OPERATORS

  • Myung, Sung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1205-1211
    • /
    • 2010
  • In the present article, we investigate the possibility of a real-valued map on the space of tuples of commuting trace-class self-adjoint operators, which behaves like the usual trace map on the space of trace-class linear operators. It turns out that such maps are related with continuous group homomorphisms from the Milnor's K-group of the real numbers into the additive group of real numbers. Using this connection, it is shown that any such trace map must be trivial, but it is proposed that the target group of a nontrivial trace should be a linearized version of Milnor's K-theory as with the case of universal determinant for commuting tuples of matrices rather than just the field of constants.