• 제목/요약/키워드: commuting automorphism

검색결과 6건 처리시간 0.018초

THE AUTOMORPHISM GROUP OF COMMUTING GRAPH OF A FINITE GROUP

  • Mirzargar, Mahsa;Pach, Peter P.;Ashrafi, A.R.
    • 대한수학회보
    • /
    • 제51권4호
    • /
    • pp.1145-1153
    • /
    • 2014
  • Let G be a finite group and X be a union of conjugacy classes of G. Define C(G,X) to be the graph with vertex set X and $x,y{\in}X$ ($x{\neq}y$) joined by an edge whenever they commute. In the case that X = G, this graph is named commuting graph of G, denoted by ${\Delta}(G)$. The aim of this paper is to study the automorphism group of the commuting graph. It is proved that Aut(${\Delta}(G)$) is abelian if and only if ${\mid}G{\mid}{\leq}2$; ${\mid}Aut({\Delta}(G)){\mid}$ is of prime power if and only if ${\mid}G{\mid}{\leq}2$, and ${\mid}Aut({\Delta}(G)){\mid}$ is square-free if and only if ${\mid}G{\mid}{\leq}3$. Some new graphs that are useful in studying the automorphism group of ${\Delta}(G)$ are presented and their main properties are investigated.

ON AUTOMORPHISMS IN PRIME RINGS WITH APPLICATIONS

  • Raza, Mohd Arif
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.641-650
    • /
    • 2021
  • The notions of skew-commuting/commuting/semi-commuting/skew-centralizing/semi-centralizing mappings play an important role in ring theory. ${\mathfrak{C}}^*$-algebras with these properties have been studied considerably less and the existing results are motivating the researchers. This article elaborates the structure of prime rings and ${\mathfrak{C}}^*$-algebras satisfying certain functional identities involving automorphisms.

COMMUTING AUTOMORPHISM OF p-GROUPS WITH CYCLIC MAXIMAL SUBGROUPS

  • Vosooghpour, Fatemeh;Kargarian, Zeinab;Akhavan-Malayeri, Mehri
    • 대한수학회논문집
    • /
    • 제28권4호
    • /
    • pp.643-647
    • /
    • 2013
  • Let G be a group and let $p$ be a prime number. If the set $\mathcal{A}(G)$ of all commuting automorphisms of G forms a subgroup of Aut(G), then G is called $\mathcal{A}(G)$-group. In this paper we show that any $p$-group with cyclic maximal subgroup is an $\mathcal{A}(G)$-group. We also find the structure of the group $\mathcal{A}(G)$ and we show that $\mathcal{A}(G)=Aut_c(G)$. Moreover, we prove that for any prime $p$ and all integers $n{\geq}3$, there exists a non-abelian $\mathcal{A}(G)$-group of order $p^n$ in which $\mathcal{A}(G)=Aut_c(G)$. If $p$ > 2, then $\mathcal{A}(G)={\cong}\mathbb{Z}_p{\times}\mathbb{Z}_{p^{n-2}}$ and if $p=2$, then $\mathcal{A}(G)={\cong}\mathbb{Z}_2{\times}\mathbb{Z}_2{\times}\mathbb{Z}_{2^{n-3}}$ or $\mathbb{Z}_2{\times}\mathbb{Z}_2$.

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • 대한수학회논문집
    • /
    • 제33권4호
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

GENERALIZED SKEW DERIVATIONS AS JORDAN HOMOMORPHISMS ON MULTILINEAR POLYNOMIALS

  • De Filippis, Vincenzo
    • 대한수학회지
    • /
    • 제52권1호
    • /
    • pp.191-207
    • /
    • 2015
  • Let $\mathcal{R}$ be a prime ring of characteristic different from 2, $\mathcal{Q}_r$ be its right Martindale quotient ring and $\mathcal{C}$ be its extended centroid. Suppose that $\mathcal{G}$ is a nonzero generalized skew derivation of $\mathcal{R}$, ${\alpha}$ is the associated automorphism of $\mathcal{G}$, f($x_1$, ${\cdots}$, $x_n$) is a non-central multilinear polynomial over $\mathcal{C}$ with n non-commuting variables and $$\mathcal{S}=\{f(r_1,{\cdots},r_n)\left|r_1,{\cdots},r_n{\in}\mathcal{R}\}$$. If $\mathcal{G}$ acts as a Jordan homomorphism on $\mathcal{S}$, then either $\mathcal{G}(x)=x$ for all $x{\in}\mathcal{R}$, or $\mathcal{G}={\alpha}$.