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Abstract. Let R be a prime ring with center Z, I a nonzero ideal of R, and σ a non-

trivial automorphism of R such that {(x ◦ y)σ − (x ◦ y)}n ∈ Z for all x, y ∈ I. If either

char(R) > n or char (R) = 0, then R satisfies s4, the standard identity in 4 variables.

1. Introduction

Throughout this paper, unless specifically stated, R will be an associative ring,
Z the center of R, Q its two sided Martindale quotient ring and C its extended cen-
troid. We refer the reader to [3] for the definitions and related properties of these
objects. For x, y ∈ R, we denote [x, y] = xy − yx, the commutator of x and y and
x ◦ y = xy+ yx, the anti-commutator (skew-commutator) of x and y. Recall that a
ring R is prime if for any a, b ∈ R, aRb = 0 implies that a = 0 or b = 0. Let n ≥ 1
be a fixed integer and s4 be the standard identity in 4 variables. For a subset S of
R, a mapping f : S → R is called commuting (centralizing) if [f(x), x] = 0 (resp.
[f(x), x] ∈ Z) for all x ∈ S. A mapping f : S → R is called skew-commuting (skew-
centralizing) if f(x) ◦ x = 0 (resp. f(x) ◦ x ∈ Z) holds for all x ∈ S. The study of
commuting and centralizing mappings goes back to 1955 when Divinsky [10] proved
that a simple artinian ring is commutative if it has a commuting automorphism dif-
ferent from the identity mapping. Two year later Posner [17] showed that a prime
ring must be commutative if it possesses a nonzero centralizing derivation. In 1970
Luh [14] generalized Divinsky’s result to prime rings. Later, Mayne [16] obtained
the analogous result of Posner for non identity centralizing automorphisms. Similar
results extended to the case of left ideal by Bell and Martindale [4] and Lanski [13].

In [5] Brešar obtained a characterization of commuting additive mappings on
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prime rings. Based on this result, Brešar initiated the study of functional identi-
ties. We refer the reader to Brešar [7] for an introductory account on functional
identities and their applications. In [6], Brešar proved that there are no nonzero
skew-commuting additive mappings on a 2- torsion free semiprime rings. In other
words, if R is a 2-torsion free semiprime ring and f : R → R, an additive mapping
such that f(x) ◦ x = 0, for all x ∈ R, then f = 0.

In [2] Ashraf and Rehman proved that, If R is a prime ring, I a nonzero ideal
of R and d is a derivation of R such that d(x ◦ y)− (x ◦ y) = 0 for all x, y ∈ I, then
R is commutative. Further in [1] Argac and Inceboz generalized this result, and
obtained the following result, if R is a prime ring, I a nonzero ideal of R and d is a
derivation of R, n is a fixed positive integer and (d(x◦y))n− (x◦y) = 0 or is central
for all x, y ∈ I, then the ring is commutative. The present paper is motivated by
the previous results and we here continue this line of investigation by examining
what happens in case the derivation is replaced by automorphism. Explicitly we
shall prove the following theorem:

Theorem A. Let R be a prime ring with center Z, I a nonzero ideal of R, and σ a
nontrivial automorphism of R such that {(x ◦ y)σ − (x ◦ y)}n ∈ Z for all x, y ∈ I.
If either char(R) > n or char (R) = 0, then R satisfies s4, the standard identity in
4 variables.

2. Main Result

We begin our discussion with the following well-known results.

Lemma 2.1.([18, Lemma 2.1]) Let R be a prime ring with the extended centroid C.
Then the following conditions are equivalent:

(i) dimCRC ≤4;

(ii) R satisfies s4, the standard identity in 4 variables;

(iii) R is commutative or R embeds in M2(F ) for F a field;

(iv) R is algebraic of bounded degree 2 over C;

(v) R satisfies [[x2, y], [x, y]].

An automorphism σ of R is called Q-inner if there exists an invertible element
b ∈ Q such that xσ = bxb−1 for all x ∈ R. Otherwise, σ is called outer. We denote
by A the group of all automorphisms of R and by Gi the group consisting of all
Q-inner automorphisms of R. Recall that a subset S of A is said to be independent
(modulo Gi) if for any g1, g2 ∈ S, g1g

−1
2 ∈ Gi implies g1 = g2. For instance, if g

is an outer automorphism of R, then 1 and g are independent (modulo Gi). The
following useful result is due to Chuang [9]. We only state a special case for our
proofs in the sequel and refer its proof to that of Chuang [9].
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Lemma 2.2.([9, Theorem 3]) Suppose that R is a prime ring and S an independent
subset of A modulo Gi. Let ϕ = ψ(xi

gj ) = 0 be a generalized identity with automor-
phisms of R reduced with respect to S. If, for all xi ∈ X, gj ∈ S, the xi

gi −
word degree of ϕ = ψ(xi

gj ) is strictly less than char(R) when char(R) ̸= 0,
then ψ(zij) = 0 is also a generalized polynomial identity of R.

We begin our discussion with the following result, which is essential for devel-
oping the proof of our main theorem.

Theorem 2.1. Let R be a prime ring, I a nonzero ideal of R, and σ a nontrivial
automorphism of R such that {(x ◦ y)σ − (x ◦ y)}n = 0 for all x, y ∈ I, n be fixed
positive integer. If either char(R) > n or char (R) = 0, then R satisfies s4.

Proof. We assume that dimCRC > 4. By assumption, we get that

{(x ◦ y)σ − (x ◦ y)}n = 0 for all x, y ∈ I.

Since σ is an automorphism of R such that σ ̸= 1, we have

(2.1) {(xσ ◦ yσ)− (x ◦ y)}n = 0 for all x, y ∈ I.

If σ is an Q-outer automorphism of R, by Chuang ([9], Main Theorem), R also
satisfies identity (2.1). Since either char (R) > n or char (R) = 0, it follows from
Lemma 2.2 that

(2.2) {(z ◦ w)− (x ◦ y)}n = 0 for all x, y, z, w ∈ R.

It is well known that there exists a field F such that R and Fm satisfy the same
polynomial identities (see Jacobson, [12], p. 57, p. 89). Let eij be a matrix unit
with 1 in (i, j)-entry and zero elsewhere. Suppose m ≥ 2, if we choose z = e11, w =
e22, x = e12, y = e21, then we get a contradiction:

0 = {(e11 ◦ e22)− (e12 ◦ e21)}n

= (−1)ne11 + (−1)ne22 ̸= 0.

This forces m = 1, that is R is commutative, a contradiction.
We now assume that σ is Q-inner. So there exists an invertible element b ∈ Q

such that xσ = bxb−1 for all x ∈ R. We note that b /∈ C since σ ̸= 1. By a theorem
of Chuang [8], Q and I satisfy the same generalized polynomial identities (GPI’s).
From (2.1) we see that

(2.3) {b(x ◦ y)b−1 − (x ◦ y)}n = 0 for all x, y ∈ Q.

Since Q remains prime by the primeness of R, replacing R by Q we may assume
that b ∈ R and C is just the center of R. Note that R is a centrally closed prime
C-algebra in the present situation (Erickson et al., [11]), i.e., RC = R.
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Since b /∈ C, it is obvious that (2.3) is a nontrivial GPI on R. By Martindale’s
theorem [15], R is a strongly primitive ring. Let VR be a faithful irreducible right
R-module with commuting division ring D. By the density theorem, R acts densely
on DV .

For any given v ∈ V , we claim that v and vb are D-dependent. If vb = 0, then
v and vb are D-dependent and we are done in this case. Suppose that vb ̸= 0, v
and vb are D-independent. We consider the following two cases.

Case 1. Assume that v, vb, vb−1 are D-independent, by the density of R, there
exist x, y ∈ R such that

vx = 0, vbx = vb−1, vb−1x = 0,
vy = 0, vby = 0, vb−1y = vb.

From (2.3), we get a contradiction:

0 = v{b(x ◦ y)b−1 − (x ◦ y)}n = v ̸= 0.

Case 2. Otherwise, v, vb, vb−1 areD-dependent. Since v and vb areD-independent,
we have vb−1 = d1v + d2vb, for some d1, d2 ∈ D. Moreover, we claim that d2 ̸= 0.
Indeed, if d2 = 0, then vb−1 = d1v and v = d1vb, a contradiction. By the density
of R there exist x, y ∈ R such that

vx = v, vbx = 0,
vy = −v, vby = vb

and so from (2.3), we get a contradiction:

0 = v{b(x ◦ y)b−1 − (x ◦ y)}n = v2n ̸= 0.

From the above, we have proven that v and vb are D-dependent, i.e., vb = α(v)v for
all v ∈ V , where α(v) ∈ D depends on v ∈ V . In fact, it is easy to check that α(v)
is independent of the choice of v ∈ V . i.e., there exists λ ∈ D such that vb = λv for
all v ∈ V . We claim λ ∈ Z(D), the center of D. Indeed, for any β ∈ D,

(βv)b = λ(βv) = (λβ)v

and on the other hand

(βv)b = β(vb) = β(λv) = (βλ)v.

From the above two expression we can get λβ = βλ, which implies λ ∈ Z(D). So
b ∈ C, a contradiction. Thus dimCRC ≤ 4. By Lemma 2.1, R satisfies s4. This
completes the proof. 2
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Now, we are well equipped to prove our main result.

Theorem 2.2. Let R be a prime ring, I a nonzero ideal of R, and σ a nontrivial
automorphism of R such that {(x ◦ y)σ − (x ◦ y)}n ∈ Z for all x, y ∈ I, n be fixed
positive integer. If either char(R) > n or char (R) = 0, then R satisfies s4.

Proof. We assume that dimCRC > 4. By assumption we get that,

[{(x ◦ y)σ − (x ◦ y)}n, r] = 0 for all x, y, r ∈ I.

Since σ is an automorphism of R with σ ̸= 1, an identity map, we have

(2.4) [{(xσ ◦ yσ)− (x ◦ y)}n, r] = 0 for all x, y, r ∈ I.

If σ is an Q-outer automorphism of R, by Chuang ([9], Main Theorem), R also
satisfies identity (2.4). Since either char (R) > n or char (R) = 0, it follows from
Lemma 2.2 that

(2.5) [{(z ◦ w)− (x ◦ y)}n, r] = 0 for all x, y, r, z, w ∈ R.

It is well known that there exists a field F such that R and Fm satisfy the same
polynomial identities (see Jacobson, [12], p. 57, p. 89). Let eij be a matrix unit
with 1 in (i, j)-entry and zero elsewhere. Since dimCRC > 4, we see that m > 2.
If we choose z = e11, w = e22, x = e12, y = e21, r = e13, then by (2.5) we get a
contradiction as follows

0 = [{(e11 ◦ e22)− (e12 ◦ e21)}n, e13] = (−1)ne13 ̸= 0.

We now assume that σ is Q-inner. So there exists an invertible element b ∈ Q such
that xσ = bxb−1 forall x ∈ R. Since σ ̸= 1, we see that b /∈ C. By a theorem of
Chuang [8], Q and I satisfy the same generalized polynomial identities. It follows
from (2.4) that

(2.6) [{b(x ◦ y)b−1 − (x ◦ y)}n, r] = 0 for all x, y, r ∈ Q.

Since b /∈ C, it is obvious that (2.6) is a nontrivial GPI on Q. By Martindale’s
theorem [15], Q is a strongly primitive ring. Let VQ be a faithful irreducible right
Q-module with commuting ring D = End(VQ), a finite dimensional division algebra
over C. By the density theorem, Q acts densely on DV .

If dimDV = ∞, then {b(x ◦ y)b−1 − (x ◦ y)}n = 0 holds on H, the socle of Q,
and hence it also holds on Q. Thus, by above Theorem 2.1, we prove the theorem
in this case. So we must have dim DV < ∞. Thus Q is isomorphic to Dm, the
m×m matrix ring over D for some m.

If C is finite, then D is a finite division ring and thus is a field by Wedderburn’s
theorem. In this case, Q = Cm. On the other hand, if C is infinite and F is a
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maximal subfield of D, then by a Vandermonde determinant argument, we know
that the condition

{b(x ◦ y)b−1 − (x ◦ y)}n ∈ C for all x, y,∈ Q.

carries over to

{b(x ◦ y)b−1 − (x ◦ y)}n ∈ F for all x, y,∈ Q⊗C F.

But Q ⊗C F = Dm ⊗ F = (D ⊗C F )m = Fk for some k. In either case, we may
suppose that Q = Fk for some k > 1. Since dim CQ > 4, we see that k > 2. Let V
be a k-dimensional vector space over F and Q can be realized as a ring consisting
of all F -linear transformations of V . For any given v ∈ V , we claim that v and vb
are F -dependent. Suppose, on the contrary, that v and vb are F -independent. We
reduce the proof to the following two cases.

Case 1. Assume that v, vb, vb−1 are F -independent, we extend v, vb, vb−1 to
be an F -base v, vb, vb−1, vi, · · · vk of FV , where i = 4, 5, · · · , k, by the density of
Q, there exist x, y ∈ Q such that

vx = 0, vbx = vb−1, vb−1x = 0, vix = 0,
vy = 0, vby = 0, vb−1y = vb, viy = 0,

for i = 4, 5, · · · , k. And so

v(x ◦ y) = 0, vb(x ◦ y) = vb, vb−1(x ◦ y) = vb−1, vi(x ◦ y) = 0,

for i = 4, 5, · · · , k. Hence {(b(x ◦ y)b−1)− (x ◦ y)}n is of rank at most 2. Being in
F , we get that {(b(x ◦ y)b−1)− (x ◦ y)}n = 0. Thus we have a contradiction:

0 = v{(b(x ◦ y)b−1)− (x ◦ y)}n = v ̸= 0.

Case 2. Otherwise, v, vb, vb−1 are F -dependent. Since v and vb are F -independent,
we extend v, vb to be an F -base v, vb, vi, · · · vk of FV , where i = 3, 4, 5, · · · , k.
We have vb−1 = d1v + d2vb, for some d1, d2 ∈ F . Moreover, we claim that d2 ̸= 0.
Indeed, if d2 = 0, then vb−1 = d1v and v = d1vb, a contradiction. By the density
of Q there exist x, y ∈ Q such that

vx = v, vbx = 0, vix = 0,
vy = −v, vby = vb, viy = 0,

for i = 3, 4, 5, · · · , k. And so

v(x ◦ y) = −2v, vb(x ◦ y) = 0, vi(x ◦ y) = 0,

for i = 3, 4, 5, · · · , k. Hence {(b(x ◦ y)b−1)− (x ◦ y)}n is of rank at most 2. Being
in F , we get that {(b(x ◦ y)b−1)− (x ◦ y)}n = 0. Thus we have a contradiction:

0 = v{(b(x ◦ y)b−1)− (x ◦ y)}n = v2n ̸= 0.
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From the above, we have proven that v and vb are F -dependent for every v ∈
V . Following the same proof as that of above theorem, we obtain that b ∈ F , a
contradiction. Thus dimCRC ≤ 4. In view of Lemma 2.1, R satisfies s4. 2

By taking a special case for n = 1 of Theorem 2.2, we have the following
corollary.

Corollary 2.1. Let R be a prime ring, I a nonzero ideal of R, and σ a nontrivial
automorphism of R such that {(x◦y)σ−(x◦y)} ∈ Z for all x, y ∈ I, then R satisfies
s4.

The following example demonstrates that R to be prime is essential in Theorem
2.2.

Example 2.1. Let Z be the ring of all integers. Let

R =


 0 a b

0 0 c
0 0 0

 |a, b, c ∈ Z

, I =


 0 a b

0 0 0
0 0 0

 |a, b ∈ Z

 and define

σ : R→ R by

 0 a b
0 0 c
0 0 0

σ

=

 0 −a b
0 0 −c
0 0 0

. Then I is a nonzero ideal of R,

and it is easy to see that σ is an automorphism of R such that {(x◦y)σ−(x◦y)}n ∈ Z
for all x, y ∈ I, but R is not commutative. Hence, in theorem the hypothesis of
primeness cannot be omitted.
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[6] M. Brešar, On skew commuting mappings of rings, Bull. Aust. Math. Soc., 47(1993),
291-296.
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