• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.022 seconds

ON GRADED J-IDEALS OVER GRADED RINGS

  • Tamem Al-Shorman;Malik Bataineh;Ece Yetkin Celikel
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • The goal of this article is to present the graded J-ideals of G-graded rings which are extensions of J-ideals of commutative rings. A graded ideal P of a G-graded ring R is a graded J-ideal if whenever x, y ∈ h(R), if xy ∈ P and x ∉ J(R), then y ∈ P, where h(R) and J(R) denote the set of all homogeneous elements and the Jacobson radical of R, respectively. Several characterizations and properties with supporting examples of the concept of graded J-ideals of graded rings are investigated.

ON SEMI-REGULAR INJECTIVE MODULES AND STRONG DEDEKIND RINGS

  • Renchun Qu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.1071-1083
    • /
    • 2023
  • The main motivation of this paper is to introduce and study the notions of strong Dedekind rings and semi-regular injective modules. Specifically, a ring R is called strong Dedekind if every semi-regular ideal is Q0-invertible, and an R-module E is called a semi-regular injective module provided Ext1R(T, E) = 0 for every 𝓠-torsion module T. In this paper, we first characterize rings over which all semi-regular injective modules are injective, and then study the semi-regular injective envelopes of R-modules. Moreover, we introduce and study the semi-regular global dimensions sr-gl.dim(R) of commutative rings R. Finally, we obtain that a ring R is a DQ-ring if and only if sr-gl.dim(R) = 0, and a ring R is a strong Dedekind ring if and only if sr-gl.dim(R) ≤ 1, if and only if any semi-regular ideal is projective. Besides, we show that the semi-regular dimensions of strong Dedekind rings are at most one.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

A NOTE ON WITT RINGS OF 2-FOLD FULL RINGS

  • Cho, In-Ho;Kim, Jae-Gyeom
    • Bulletin of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.121-126
    • /
    • 1985
  • D.K. Harrison [5] has shown that if R and S are fields of characteristic different from 2, then two Witt rings W(R) and W(S) are isomorphic if and only if W(R)/I(R)$^{3}$ and W(S)/I(S)$^{3}$ are isomorphic where I(R) and I(S) denote the fundamental ideals of W(R) and W(S) respectively. In [1], J.K. Arason and A. Pfister proved a corresponding result when the characteristics of R and S are 2, and, in [9], K.I. Mandelberg proved the result when R and S are commutative semi-local rings having 2 a unit. In this paper, we prove the result when R and S are 2-fold full rings. Throughout this paper, unless otherwise specified, we assume that R is a commutative ring having 2 a unit. A quadratic space (V, B, .phi.) over R is a finitely generated projective R-module V with a symmetric bilinear mapping B: V*V.rarw.R which is nondegenerate (i.e., the natural mapping V.rarw.Ho $m_{R}$ (V, R) induced by B is an isomorphism), and with a quadratic mapping .phi.:V.rarw.R such that B(x,y)=(.phi.(x+y)-.phi.(x)-.phi.(y))/2 and .phi.(rx)= $r^{2}$.phi.(x) for all x, y in V and r in R. We denote the group of multiplicative units of R by U(R). If (V, B, .phi.) is a free rank n quadratic space over R with an orthogonal basis { $x_{1}$, .., $x_{n}$}, we will write < $a_{1}$,.., $a_{n}$> for (V, B, .phi.) where the $a_{i}$=.phi.( $x_{i}$) are in U(R), and denote the space by the table [ $a_{ij}$ ] where $a_{ij}$ =B( $x_{i}$, $x_{j}$). In the case n=2 and B( $x_{1}$, $x_{2}$)=1/2, we reserve the notation [ $a_{11}$, $a_{22}$] for the space.the space.e.e.e.

  • PDF

THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

  • Abbasi, Ahmad;Habibi, Shokoofe
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.1
    • /
    • pp.85-98
    • /
    • 2012
  • Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by T(${\Gamma}_I(R)$). It is the (undirected) graph with all elements of R as vertices, and for distinct x, y ${\in}$ R, the vertices x and y are adjacent if and only if x + y ${\in}$ S(I). The total graph of a commutative ring, that denoted by T(${\Gamma}(R)$), is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if x + y ${\in}$ Z(R) which is due to Anderson and Badawi [2]. In the case I = {0}, $T({\Gamma}_I(R))=T({\Gamma}(R))$; this is an important result on the definition.

Some Properties of Regular Multiplication Rings

  • Lee, Dong-Soo;Lee, Hyun-Bok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.4 no.1
    • /
    • pp.99-102
    • /
    • 1991
  • Let R be a commutative ring with identity. A ring is said to be a regular multiplication ring if $A{\subseteq}B$, where A and B are ideals of R with B regular, implies that there exists an ideal C of R such that A = BC. We characterize such rings and study their properties.

  • PDF

On Graded 2-Absorbing and Graded Weakly 2-Absorbing Primary Ideals

  • Soheilnia, Fatemeh;Darani, Ahmad Yousefian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.4
    • /
    • pp.559-580
    • /
    • 2017
  • Let G be an arbitrary group with identity e and let R be a G-graded ring. In this paper, we define the concept of graded 2-absorbing and graded weakly 2-absorbing primary ideals of commutative G-graded rings with non-zero identity. A number of results and basic properties of graded 2-absorbing primary and graded weakly 2-absorbing primary ideals are given.

Simple Presentness in Modular Group Algebras over Highly-generated Rings

  • Danchev, Peter V.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.57-64
    • /
    • 2006
  • It is proved that if G is a direct sum of countable abelian $p$-groups and R is a special selected commutative unitary highly-generated ring of prime characteristic $p$, which ring is more general than the weakly perfect one, then the group of all normed units V (RG) modulo G, that is V (RG)=G, is a direct sum of countable groups as well. This strengthens a result due to W. May, published in (Proc. Amer. Math. Soc., 1979), that treats the same question but over a perfect ring.

  • PDF

HIGHER LEFT DERIVATIONS ON SEMIPRIME RINGS

  • Park, Kyoo-Hong
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.355-362
    • /
    • 2010
  • In this note, we extend the Bresar and Vukman's result [1, Proposition 1.6], which is well-known, to higher left derivations as follows: let R be a ring. (i) Under a certain condition, the existence of a nonzero higher left derivation implies that R is commutative. (ii) if R is semiprime, every higher left derivation on R is a higher derivation which maps R into its center.

ON UNIFORMLY S-ABSOLUTELY PURE MODULES

  • Xiaolei Zhang
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.521-536
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. In this paper, we introduce and study the notions of u-S-pure u-S-exact sequences and uniformly S-absolutely pure modules which extend the classical notions of pure exact sequences and absolutely pure modules. And then we characterize uniformly S-von Neumann regular rings and uniformly S-Noetherian rings using uniformly S-absolutely pure modules.