THE TOTAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO PROPER IDEALS

Ahmad Abbasi and Shokoofe Habibi

ABSTRACT. Let R be a commutative ring and I its proper ideal, let S(I) be the set of all elements of R that are not prime to I. Here we introduce and study the total graph of a commutative ring R with respect to proper ideal I, denoted by $T(\Gamma_I(R))$. It is the (undirected) graph with all elements of R as vertices, and for distinct $x,y\in R$, the vertices x and y are adjacent if and only if $x+y\in S(I)$. The total graph of a commutative ring, that denoted by $T(\Gamma(R))$, is the graph where the vertices are all elements of R and where there is an undirected edge between two distinct vertices x and y if and only if $x+y\in Z(R)$ which is due to Anderson and Badawi [2]. In the case $I=\{0\}$, $T(\Gamma_I(R))=T(\Gamma(R))$; this is an important result on the definition.

1. Introduction

The concept of total graph of a commutative ring R, one of the most interesting concept of the algebraic structures in graph theory denoted by $T(\Gamma(R))$, was first introduced by Anderson and Badawi in [2], such that the vertex set is R and the distinct vertices x and y are adjacent if and only if $x + y \in Z(R)$ where Z(R) is the zero divisors of R. Throughout this work all rings are assumed to be commutative with non-zero identity. Let I be a proper ideal of R. The total graph of a commutative ring R with respect to proper ideal I, denoted by $T(\Gamma_I(R))$, is the graph which vertices are all elements of R and two distinct vertices $x, y \in R$ are adjacent if and only if $x + y \in S(I)$. We use the notation S(I) to refer to the set of elements of R that are not prime to I, we say that $a \in R$ is prime to I, if $ra \in I$ (where $r \in R$) implies that $r \in I$ (see [6, 7]). Clearly, S(I) is not empty since I is a proper ideal of R. It is easy to check that, when $I = \{0\}$, $T(\Gamma_I(R)) = T(\Gamma(R))$. The zero-divisor graph of R, denoted $\Gamma(R)$, is the graph whose vertices are $Z(R)^*$ (the nonzero zero-divisors of R) with two distinct vertices joined by an edge when the product of the vertices is zero (c.f. [3]). In [8], Redmond introduced the zero divisor graph with respect to proper ideal I, denoted by $\Gamma_I(R)$, as the graph

Received August 24, 2010.

2010 Mathematics Subject Classification. 13D45, 13E10, 13C05.

Key words and phrases. commutative rings, zero divisor, total graph.

with vertices $\{x \in R - I : xy \in I \text{ for some } y \in R - I\}$ where distinct vertices x and y are adjacent if and only if $xy \in I$. If $I = \{0\}$, then $\Gamma_I(R) = \Gamma(R)$. Redmond explored the relationship between $\Gamma_I(R)$ and $\Gamma(R)$. He gave an example of rings R, S and ideals $I \subseteq R$, $J \subseteq S$, where $\Gamma(R/I) \cong \Gamma(S/J)$ but $\Gamma_I(R) \ncong \Gamma_J(S)$. Similarly, in this paper we give an example (see Example 2.2) such that $T(\Gamma_I(R)) \cong T(\Gamma_J(S))$ but $T(\Gamma(R/I)) \ncong T(\Gamma(S/J))$ and some basic results on the relationship between $T(\Gamma_I(R))$ and $T(\Gamma(R/I))$ in Section 2.

The set S(I) is not necessarily an ideal of R (not always closed under addition) and since S(I) is a union of prime ideals of R containing I (see [4, Exe. 3.9] and note that 2.1), whenever $xy \in S(I)$ for $x,y \in R$, then $x \in S(I)$ or $y \in S(I)$. So, if S(I) is an ideal of R, then it is actually a prime ideal of R; hence the study of $T(\Gamma_I(R))$ breaks naturally into two cases depending on whether or not S(I) is an ideal of R and in Sections 3, 4, we state several results about the relationship between diameter and girth of $T(\Gamma_I(R))$ and $T(\Gamma(R/I))$. The proper ideal I is said to be P-primal ideal of R when P = S(I) forms an ideal; then P is said to be the adjoint ideal of I. It is easy to see that, S(I) = I when I is a prime ideal R (see [6, 7]). Let $S(\Gamma_I(R))$ be the (induced) subgraph of $T(\Gamma_I(R))$ with vertices S(I), and let $\overline{S}(\Gamma_I(R))$ be the (induced) subgraph $T(\Gamma_I(R))$ with vertices R - S(I).

Let G be a graph with vertex set V(G). Recall that G is connected if there is a path between any two distinct vertices of G. At the other extreme, we say that G is totally disconnected if no two vertices of G are adjacent. For vertices x and y of G, d(x,y) be the length of a shortest path from x to y (d(x,x)=0 and $d(x,y)=\infty$ if there is no such path). The diameter of a graph G, denoted by diam(G), is the supremum of the distances between vertices. The girth of G, denoted by gr(G), is the length of a shortest cycle in G ($gr(G)=\infty$ if G contains no cycles). A graph G is said to be complete bipartite if V(G) can be partitioned into two disjoint sets V_1, V_2 such that no two vertices within any V_1 or V_2 are adjacent, but for every $u \in V_1, v \in V_2$, u, v are adjacent. Then we use the symbol $K^{m,n}$ for the complete bipartite graph where the cardinal numbers of V_1 and V_2 are m, n, respectively (we allow m and n to be infinite cardinals). A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. Let K_n denote the complete graph with n vertices.

In Section 2, we obtain an identity between completeness of $\overline{S}(\Gamma_I(R))$ and $Reg\Gamma(R/I)$. We study the Graphs $T(\Gamma_I(R))$, $S(\Gamma_I(R))$ and $\overline{S}(\Gamma_I(R))$ for the case when S(I) is an ideal in Section 3 and for the case S(I) is not an ideal in Section 4. Though our definition of total graph of a commutative ring is a generalization of the definition given in [2], we would like to point out that many of the proofs provided in this paper are essentially the same as the proofs provided in [2].

2. Example and basic structure

In this section, we explore the relationship between $T(\Gamma_I(R))$ and $T(\Gamma(R/I))$ on basic structure.

Note 2.1. We can easily show that $Z(R/I) = \{a + I : a \in S(I)\}$ and $Reg(R/I) = \{a + I : a \notin S(I)\}$. Thus Z(R/I) is an ideal R/I if and only if S(I) is an ideal R.

Let $Reg(\Gamma(R/I))$ be the (induced) subgraph of $T(\Gamma(R/I))$ with vertices Reg(R/I), the set of regular elements of R/I, let $Z(\Gamma(R/I))$ be the (induced) subgraph of $T(\Gamma(R/I))$ with vertices Z(R/I).

Example 2.2. Let $R = \mathbb{Z}_8$, $S = \mathbb{Z}_4 \times \mathbb{Z}_2$ and $I = \{\bar{0}, \bar{2}, \bar{4}, \bar{6}\} \leq R$, $J = \{\bar{0}\} \times \mathbb{Z}_2 \leq S$. It is easy to check that S(I) = I and $S(J) = \{(\bar{0}, \bar{0}), (\bar{0}, \bar{1}), (\bar{2}, \bar{0}), (\bar{2}, \bar{1})\}$. $T(\Gamma_I(R))$ and $T(\Gamma_J(S))$ are the union of 2 disjoint K^4 , s. Now, $T(\Gamma(R/I))$ is a graph with two vertices but $T(\Gamma(S/J))$ is a graph with four vertices.

Theorem 2.3. Let R be a commutative ring with the proper ideal I, and let $x, y \in R$. Then

- (1) If x + I and y + I are (distinct) adjacent vertices in $T(\Gamma(R/I))$, then x is adjacent to y in $T(\Gamma_I(R))$.
- (2) If x and y are (distinct) adjacent vertices in $T(\Gamma_I(R))$ and $x+I \neq y+I$, then x+I is adjacent to y+I in $T(\Gamma(R/I))$.
- (3) If x is adjacent to y in $T(\Gamma_I(R))$ and x + I = y + I, then $2x, 2y \in S(I)$ and all distinct elements of x + I are adjacent in $T(\Gamma_I(R))$.

_		
$D_{max} \circ f$	It is clear.	
P7001	II. IS CIEAL	1 1
. ,	IC ID CICCII.	

According to the following corollary and remark, there is a strong relationship between $T(\Gamma(R/I))$ and $T(\Gamma_I(R))$.

Note that for a graph G, we say that $\{G_{\theta}\}_{{\theta}\in\Theta}$ is a collection of disjoint subgraphs of G if all vertices and edges of each G_{θ} are contained in G and no two of these G_{θ} contain a common vertex.

Corollary 2.4. Let R be a commutative ring with the proper ideal I. Then $T(\Gamma_I(R))$ contains |I| disjoint subgraphs isomorphic to $T(\Gamma(R/I))$.

Proof. Let $\{a_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq R$ be a set of distinct representatives of the vertices of $T(\Gamma(R/I))$. Define a graph G_i , for each $i\in I$, with vertices $\{a_{\lambda}+i|\lambda\in\Lambda\}$, where $a_{\lambda}+i$ is adjacent to $a_{\beta}+i$ in G_i whenever $a_{\lambda}+I$ is adjacent to $a_{\beta}+I$ in $T(\Gamma(R/I))$; i.e., whenever $a_{\lambda}+a_{\beta}\in S(I)$. By the above theorem, G_i is a subgraph of $T(\Gamma_I(R))$. Also, each $G_i\cong T(\Gamma(R/I))$, and G_i and G_j contains no common vertices if $i\neq j$.

Remark 2.5. It follows from the above corollary that $S(\Gamma_I(R))$ contains |I| disjoint subgraphs isomorphic to $Z(\Gamma(R/I))$ and $\overline{S}(\Gamma_I(R))$ contains |I| disjoint subgraphs isomorphic to $Reg(\Gamma(R/I))$; since for each $a \in S(I)$ and $b \in R-S(I)$, and $i \in I$; $a + i \in S(I)$ (for some $r \in R - I$, $ar \in I$; hence $(a + i)r \in I$) and

 $b+i \in R-S(I)$. So a graph G_i with vertices $\{a_{\lambda}+i \mid \lambda \in \Lambda\}$ such that $a_{\lambda} \in S(I)$ is a subgraph $S(\Gamma_I(R))$ and a graph G_i with vertices $\{a_{\beta}+i \mid \beta \in \Lambda\}$ such that $a_{\beta} \notin S(I)$ is a subgraph $\bar{S}(\Gamma_I(R))$.

One can verify that the following method can be used to construct a graph $T(\Gamma_I(R))$.

Remark 2.6. Let $\{a_{\lambda}\}_{{\lambda}\in\Lambda}\subseteq R$ be a set of representatives of the vertices of $T(\Gamma(R/I))$. For each $i\in I$, define a graph G_i with vertices $\{a_{\lambda}+i\mid \lambda\in\Lambda\}$, where edges are defined by the relationship $a_{\lambda}+i$ is adjacent to $a_{\beta}+i$ in G_i if and only if $a_{\lambda}+I$ is adjacent to $a_{\beta}+I$ in $T(\Gamma(R/I))$ (i.e., $a_{\lambda}+a_{\beta}\in S(I)$). Define the graph G to have as its vertex set $V=\bigcup_{i\in I}G_i$. We define the edge set of G to be:

- (1) all edges contained in G_i for each $i \in I$,
- (2) for distinct $\lambda, \beta \in \Lambda$ and for any $i, j \in I$, $a_{\lambda} + i$ is adjacent to $a_{\beta} + j$ if and only if $a_{\lambda} + I$ is adjacent to $a_{\beta} + I$ in $T(\Gamma(R/I))$ (i.e., $a_{\lambda} + a_{\beta} \in S(I)$),
- (3) for $\lambda \in \Lambda$ and distinct $i, j \in I$, $a_{\lambda} + i$ is adjacent to $a_{\lambda} + j$ if and only if $2a_{\lambda} \in S(I)$.

It follows that if $T(\Gamma(R/I))$ is a graph on N = |R/I| vertices, then $T(\Gamma_I(R))$ is a graph on N.|I| vertices.

Proposition 2.7. Let R be a commutative ring with the proper ideal I. Then (1) $S(\Gamma_I(R))$ is complete (connected) if and only if $Z(\Gamma(R/I))$ is complete (connected).

- (2) If $\overline{S}(\Gamma_I(R))$ is complete, then $Reg(\Gamma(R/I))$ is complete.
- (3) $\bar{S}(\Gamma_I(R))$ is connected if and only if $Reg(\Gamma(R/I))$ is connected.

Proof. (1) Let $S(\Gamma_I(R))$ be a complete subgraph $T(\Gamma_I(R))$ and $x+I \neq y+I$ are distinct elements of $Z(\Gamma(R/I))$. So x and y are adjacent in $S(\Gamma_I(R))$; hence x+I and y+I are adjacent in $Z(\Gamma(R/I))$. Conversely, suppose x and y are distinct elements of $S(\Gamma_I(R))$. If x+I=y+I, then $x-y\in I$. There exists $r\in R-I$ such that $ry\in I$; hence $rx\in I$. It follows that $r(x+y)\in I$, thus x and y are adjacent in $S(\Gamma_I(R))$. If $x+I\neq y+I$, then x+I and y+I are adjacent in $Z(\Gamma(R/I))$. So $x+y\in S(I)$, as required.

- (2) The proof is omitted. The converse is not necessarily true, for example consider $R = \mathbb{Z}_{18}$, and $I = \langle \bar{3} \rangle$ (it is easy to check that S(I) = I).
- (3) The sufficiency implication is clear. Let $Reg(\Gamma(R/I))$ is connected. Suppose x and y are distinct elements of $\bar{S}(\Gamma_I(R))$. If x+I=y+I, then x-(-y)-y is a path between x and y (if x=-y, then x and y are adjacent). If $x+I\neq y+I$, the proof is clear and omitted.

Lemma 2.8. Let R be a commutative ring with the proper ideal I. Then $gr(T(\Gamma_I(R))) \leq gr(T(\Gamma(R/I)))$. If $T(\Gamma(R/I))$ contains a cycle, then so does $T(\Gamma_I(R))$, and therefore $gr(T(\Gamma_I(R))) \leq gr(T(\Gamma(R/I))) \leq 4$.

Proof. If $\operatorname{gr}(T(\Gamma(R/I))) = \infty$ we are done. Now suppose $\operatorname{gr}(T(\Gamma(R/I))) = k < \infty$. Let $x_1 + I - x_2 + I - \cdots - x_k + I - x_1 + I$ be a cycle in $T(\Gamma(R/I))$ through k

distinct vertices. Thus $x_1 - x_2 - \cdots - x_k - x_1$ is a cycle in $T(\Gamma_I(R))$ of length k. Hence, $\operatorname{gr}(T(\Gamma_I(R))) \leq k$. According to [2, Theorem 2.6(3), 3.15(2)], it follows that $\operatorname{gr}(T(\Gamma(R/I))) \leq 4$.

3. The case when S(I) is an ideal of R

In this section, we state a general structure for $\overline{S}(\Gamma_I(R))$ the (induced) subgraph $T(\Gamma_I(R))$ (see Theorem 3.5) and we investigate the relationship between $T(\Gamma_I(R))$ and $T(\Gamma(R/I))$ with assumption that, S(I) be an ideal of R (i.e., I is a primal ideal of R). We begin with the following theorem.

Proposition 3.1. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R. Then $S(\Gamma_I(R))$ is a complete (induced) subgraph $T(\Gamma_I(R))$ and is disjoint from $\overline{S}(\Gamma_I(R))$.

Proof. This is clear according to definition.

Theorem 3.2. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R.

- (1) The (induced) subgraph $S(\Gamma_I(R))$ with vertices \sqrt{I} is complete and each vertex of this subgraph is adjacent to each vertex of $S(\Gamma_I(R))$ and is disjoint from $\overline{S}(\Gamma_I(R))$.
 - (2) If $\{0\} \neq \sqrt{I} \subset S(I)$, then $gr(S(\Gamma_I(R))) = 3$.
- *Proof.* (1) Let $x \in \sqrt{I}$. If $x \in I$, then $x \in S(I)$; otherwise there is an integer $n \geq 2$ such that $x^n \in I$ and $x^{n-1} \notin I$. We have $x.x^{n-1} \in I$; hence $x \in S(I)$. So Part (1) follows since $\sqrt{I} \subseteq S(I)$ is an ideal and $\sqrt{I} + S(I) \subseteq S(I)$.
- (2) Let $0 \neq x \in \sqrt{I}$ and $y \in S(I) \setminus \sqrt{I}$. Then 0 x y 0 is a 3-cycle in $S(\Gamma_I(R))$, as required.

Theorem 3.3. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R.

- (1) Assume that Γ is an induced subgraph of $\overline{S}(\Gamma_I(R))$ and let x and y be distinct vertices of Γ such that are connected by a path in Γ . Then there exists a path in Γ of length 2 between x and y. In particular, if $\overline{S}(\Gamma_I(R))$ is connected, then $\operatorname{diam}(\overline{S}(\Gamma_I(R))) \leq 2$.
- (2) Suppose x and y are distinct elements of $\overline{S}(\Gamma_I(R))$ that are connected by a path. If $x + y \notin S(I)$ (that is, if x and y are not adjacent), then x (-x) y and x (-y) y are paths of length 2 between x and y in $\overline{S}(\Gamma_I(R))$.
- *Proof.* (1) Let x_1, x_2, x_3 , and x_4 are distinct vertices of Γ . It suffices to show that if there is a path $x_1-x_2-x_3-x_4$ from x_1 to x_4 , then x_1 and x_4 are adjacent. So $x_1+x_2, x_2+x_3, x_3+x_4 \in S(I)$ gives $x_1+x_4=(x_1+x_2)-(x_2+x_3)+(x_3+x_4) \in S(I)$ since S(I) is an ideal of R. Thus x_1 and x_4 are adjacent. So if $\overline{S}(\Gamma_I(R))$ is connected, then $\operatorname{diam}(\overline{S}(\Gamma_I(R))) \leq 2$.
- (2) Since $x, y \in R S(I)$ and $x + y \notin S(I)$, there exists $z \in R S(I)$ such that x z y is a path of length 2 by part (1) above. Thus $x + z, z + y \in S(I)$,

and hence $x - y = (x + z) - (z + y) \in S(I)$. Also, since $x + y \notin S(I)$, we must have $x \neq -x$ and $y \neq -x$. Thus x - (-x) - y and x - (-y) - y are paths of length 2 between x and y in $\overline{S}(\Gamma_I(R))$.

Theorem 3.4. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R. Then the following statements are equivalent.

- (1) $\overline{S}(\Gamma_I(R))$ is connected.
- (2) Either $x + y \in S(I)$ or $x y \in S(I)$ for all $x, y \in R S(I)$.
- (3) Either $x+y \in S(I)$ or $x+2y \in S(I)$ (but not both) for all $x, y \in R-S(I)$. In particular, either $2x \in S(I)$ or $3x \in S(I)$ for all $x \in R-S(I)$.
- *Proof.* (1) \Longrightarrow (2) Let $x, y \in R S(I)$ be such that $x + y \notin S(I)$. If x = y, then $x y \in S(I)$. Otherwise, x (-y) y is a path from x to y by Theorem 3.3(2), and hence $x y \in S(I)$.
- $(2)\Longrightarrow(3)$ Let $x,y\in R-S(I)$, and suppose that $x+y\notin S(I)$. By assumption, since $(x+y)-y=x\notin S(I)$, we have $x+2y=(x+y)+y\in S(I)$. Let x+y and x+2y belong to S(I). Then $y\in S(I)$ a contradiction. In particular, if $x\in R-S(I)$, then either $2x\in S(I)$ or $3x\in S(I)$.
- (3) \Longrightarrow (1) Let $x,y\in R-S(I)$ be distinct elements of R such that $x+y\notin S(I)$. By assumption, since S(I) is an ideal of R and $x+2y\in S(I)$, we get $2y\notin S(I)$. Thus $3y\in S(I)$ by hypothesis. Since $x+y\notin S(I)$ and $3y\in S(I)$, we conclude that $x\neq 2y$, and hence x-2y-y is a path from x to y in $\overline{S}(\Gamma_I(R))$. Thus $\overline{S}(\Gamma_I(R))$ is connected.

Theorem 3.5. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R, and let $|S(I)| = \alpha$ and $|R/S(I)| = \beta$ (we allow α and β to be infinite, then we have $\beta - 1 = (\beta - 1)/2 = \beta$).

- (1) If $2 \in S(I)$, then $\overline{S}(\Gamma_I(R))$ is the union of $\beta 1$ disjoint $K^{\alpha, s}$.
- (2) If $2 \notin S(I)$, then $\overline{S}(\Gamma_I(R))$ is the union of $(\beta 1)/2$ disjoint $K^{\alpha,\alpha}$.
- Proof. (1) Suppose that $2 \in S(I)$, and let $x \in R S(I)$. Note that each coset x + S(I) is a complete subgraph of $\overline{S}(\Gamma_I(R))$ since $(x + x_1) + (x + x_2) = 2x + x_1 + x_2 \in S(I)$ for all $x_1, x_2 \in S(I)$. We must have that distinct cosets form disjoint subgraphs of $\overline{S}(\Gamma_I(R))$ since if $x + x_1$ and $y + x_2$ are adjacent for some $x, y \in R S(I)$ and $x_1, x_2 \in S(I)$, then $x + y = (x + x_1) + (y + x_2) (x_1 + x_2) \in S(I)$, and hence $x y = (x + y) 2y \in S(I)$ since S(I) is an ideal R and $1 \in S(I)$. But then $1 \in S(I) = 1$ and $1 \in S(I)$. Thus $1 \in S(I)$ is the union of $1 \in S(I)$ disjoint (induced) subgraphs $1 \in S(I)$, each of which is a $1 \in S(I)$ where $1 \in S(I) = |x + S(I)|$.
- (2) Let $x \in R S(I)$ and $2 \notin S(I)$. Then no two distinct elements in x + S(I) are adjacent; otherwise if $(x + x_1) + (x + x_2) \in S(I)$ for $x_1, x_2 \in S(I)$ implies that $2x \in S(I)$, and hence $2 \in S(I)$, a contradiction.

On the other hand, the two cosets x + S(I) and -x + S(I) are disjoint, and each element of x + S(I) is adjacent to each element of -x + S(I). Thus $(x+S(I)) \cup (-x+S(I))$ is a complete bipartite (induced) subgraph of $\overline{S}(\Gamma_I(R))$;

furthermore, if $y+x_1$ adjacent to $x+x_2$ for some $y \in R-S(I)$ and $x_1, x_2 \in S(I)$, then $x+y \in S(I)$, and hence y+S(I)=-x+S(I). Thus $\overline{S}(\Gamma_I(R))$ is the union of $(\beta-1)/2$ disjoint (induced) subgraphs $(x+S(I)) \cup (-x+S(I))$, each of which is a $K^{\alpha,\alpha}$, where $\alpha = |S(I)| = |x+S(I)|$.

Remark 3.6. If S(I) is an ideal of R, according to Note 2.1, Z(R/I) = S(I)/I. Let $|Z(R/I)| = \alpha'$ and $|R/I/Z(R/I)| = \beta'$. With the above notation, it is easy to check that $\alpha = \alpha'|I|$ and $\beta = \beta'$. $2 + I \in Z(R/I)$ if and only if $2 \in S(I)$. Let $2 \in S(I)$. By part (1) of the above theorem and [2, Theorem 2.2(1)], $\overline{S}(\Gamma_I(R))$ is the union of $\beta - 1$ disjoint $K^{\alpha,s}$ and $Reg(\Gamma(R/I))$ is the union of $\beta - 1$ disjoint $K^{\alpha/|I|,s}$. Let $2 \notin S(I)$. By part (2) of the above theorem and [2, Theorem 2.2(2)], $\overline{S}(\Gamma_I(R))$ is the union of $(\beta - 1)/2$ disjoint $K^{\alpha,\alpha,s}$ and $Reg(\Gamma(R/I))$ is the union of $(\beta - 1)/2$ disjoint $K^{\alpha/|I|,s}$. It follows from Remark 2.5, $S(\Gamma_I(R))$ contains |I| disjoint subgraphs isomorphic to $Z(\Gamma(R/I))$ and $\overline{S}(\Gamma_I(R))$ contains |I| disjoint subgraphs isomorphic to $Reg(\Gamma(R/I))$.

Example 3.7. Let $n \geq 2$ be an integer. Then $Z(Z_n)$ is an ideal Z_n if and only if $n = p^k$ for some prime p and integer $k \geq 1$ (see, [2, Example 2.7]). Let $\langle n \rangle = n\mathbb{Z}$. Since $Z(\mathbb{Z}/\langle n \rangle) = \{a + \langle n \rangle : a \in S(\langle n \rangle)\}$; hence $S(\langle n \rangle)$ is an ideal \mathbb{Z} if and only if $n = p^k$ for some prime p and integer $k \geq 1$. Let $n = p^k$ for some prime p and integer $k \geq 1$. It is easy to check that $S(\langle p^k \rangle) = \langle p \rangle$, that is $\langle p^k \rangle$ is a $p\mathbb{Z}$ -primal ideal \mathbb{Z} . If p = 2, then $\overline{S}(\Gamma_{\langle p^k \rangle}(\mathbb{Z}))$ is the complete subgraph $K^{\alpha,s}$ such that $|\langle p \rangle| = \alpha$. If p > 2, then $\overline{S}(\Gamma_{\langle p^k \rangle}(\mathbb{Z}))$ is the union of p - 1/2 disjoint $K^{\alpha,\alpha,s}$.

Note 3.8. Note that if $S(I) = \{0\}$, then R is an integral domain, and $2 \in S(I)$ if and only if char R = 2.

Theorem 3.9. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R. Then

- (1) $\overline{S}(\Gamma_I(R))$ is complete if and only if $R/S(I) \cong \mathbb{Z}_2$ or $R \cong \mathbb{Z}_3$.
- (2) $\overline{S}(\Gamma_I(R))$ is connected if and only if $R/S(I) \cong \mathbb{Z}_2$ or $R/S(I) \cong \mathbb{Z}_3$.
- (3) $\overline{S}(\Gamma_I(R))$ (and hence $T(\Gamma_I(R))$ and $S(\Gamma_I(R))$) is totally disconnected if and only if $I = \{0\}$ and R is an integral domain, with char R = 2.

Proof. Let $|S(I)| = \alpha$ and $|R/S(I)| = \beta$.

(1) $\overline{S}(\Gamma_I(R))$ is complete if and only if $\overline{S}(\Gamma_I(R))$ is a single K^{α} or $K^{1,1}$ by Theorem 3.5.

Let $\overline{S}(\Gamma_I(R))$ be a complete subgraph of $T(\Gamma_I(R))$. If $2 \in S(I)$, then $\beta - 1 = 1$. Thus $R/S(I) \cong \mathbb{Z}_2$. If $2 \notin S(I)$, then $\alpha = 1$ and $(\beta - 1)/2 = 1$. Thus $S(I) = \{0\} = I$ and $\beta = 3$; hence $R \cong \mathbb{Z}_3$.

Conversely, if $R/S(I) \cong \mathbb{Z}_2$, then we show that $2 \in S(I)$. $R/S(I) = \{S(I), x + S(I)\}$ where $x \notin S(I)$. Thus x + S(I) = -x + S(I) gives $2x \in S(I)$; hence $2 \in S(I)$. So, $\overline{S}(\Gamma_I(R))$ is a single K^{α} . Next, suppose that $R \cong \mathbb{Z}_3$, then $I = \{0\}$ is only proper ideal of R, since $T(\Gamma_0(R)) = T(\Gamma(R))$, as required.

(2) By Theorem 3.5, $\overline{S}(\Gamma_I(R))$ is a connected subgraph $T(\Gamma_I(R))$ if and only if $\overline{S}(\Gamma_I(R))$ is a single K^{α} or $K^{\alpha,\alpha}$. Let $\overline{S}(\Gamma_I(R))$ be a connected subgraph of $T(\Gamma_I(R))$. If $2 \in S(I)$, then $\beta - 1 = 1$. Thus $R/S(I) \cong \mathbb{Z}_2$. If $2 \notin S(I)$, then $\beta - 1/2 = 1$ gives $\beta = 3$; hence $R/S(I) \cong \mathbb{Z}_3$.

Conversely, by part (1), it suffices to show that $\overline{S}(\Gamma_I(R))$ is connected when $R/S(I) \cong \mathbb{Z}_3$. We claim that $2 \notin S(I)$. Suppose not. Then $R/S(I) = \{S(I), x + S(I), y + S(I)\}$ where $x, y \notin S(I)$. Since R/S(I) is a cyclic group with order of 3, we have (x + S(I)) + (x + S(I)) = y + S(I); hence $y \in S(I)$ ($2x \in S(I)$), a contradiction. Thus $2 \notin S(I)$ and by Theorem 3.5(2), $\overline{S}(\Gamma_I(R))$ is a single $K^{\alpha,\alpha}$ and the proof is complete.

(3) $\overline{S}(\Gamma_I(R))$ is totally disconnected if and only if it is a disjoint union of K^1 's. Hence by Theorem 3.5, $2 \in S(I)$ and |S(I)| = 1. So R must be an integral domain with char R = 2.

Remark 3.10. Let S(I) be an ideal. Then $R/I/Z(R/I) = R/I/S(I)/I \cong R/S(I)$; hence $R/I/Z(R/I) \cong \mathbb{Z}_n$ if and only if $R/S(I) \cong \mathbb{Z}_n$ such that $n \geq 2$ is an integer. So the above theorem in conjunction with [2, Theorem 2.4] is the other proof of Proposition 2.7.

At the end of this section, we give further explicit descriptions of the diameter and girth of $\overline{S}(\Gamma_I(R))$.

Proposition 3.11. Let R be a commutative ring with proper ideal I such that S(I) is an ideal of R. Then

- (1) diam($\overline{S}(\Gamma_I(R))$) = 0,1,2, or ∞ . In particular, diam($\overline{S}(\Gamma_I(R))$) ≤ 2 if $\overline{S}(\Gamma_I(R))$ is connected.
- (2) $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3, 4 \text{ or } \infty.$ In particular, $\operatorname{gr}(\overline{S}(\Gamma_I(R))) \leq 4 \text{ if } \overline{S}(\Gamma_I(R)))$ contains a cycle.
- *Proof.* (1) Suppose that $\overline{S}(\Gamma_I(R))$ is connected. Then $\overline{S}(\Gamma_I(R))$ is a singleton, a complete graph, or a complete bipartite graph by Theorem 3.5. Thus $\operatorname{diam}(\overline{S}(\Gamma_I(R))) \leq 2$.
- (2) Let $\overline{S}(\Gamma_I(R))$ contains a cycle. Since $\overline{S}(\Gamma_I(R))$ is a disjoint union of either complete or complete bipartite graphs by Theorem 3.5, it must contain either a 3-cycle or a 4-cycle. Thus $\operatorname{gr}(\overline{S}(\Gamma_I(R))) \leq 4$.

Theorem 3.12. Let R be a commutative ring with the proper ideal I such that S(I) is an ideal of R.

- (1) diam($\overline{S}(\Gamma_I(R))$) = 0 if and only if $R \cong \mathbb{Z}_2$.
- (2) diam($\overline{S}(\Gamma_I(R))$) = 1 if and only if either $R/S(I) \cong \mathbb{Z}_2$ and $|S(I)| \geq 2$ or $R \cong \mathbb{Z}_3$.
 - (3) diam($\overline{S}(\Gamma_I(R))$) = 2 if and only if $R/S(I) \cong \mathbb{Z}_3$ and $|S(I)| \ge 2$.
 - (4) Otherwise, diam($\overline{S}(\Gamma_I(R))$) = ∞ .

Proof. These results all follow from Theorem 3.5, Theorem 3.9 and Proposition 3.11. \Box

Corollary 3.13. Let S(I) be an ideal of R and $I \neq 0$. Then we have the following results:

- (1) If diam $(Reg(\Gamma(R/I))) = 0$, then diam $(\overline{S}(\Gamma_I(R))) = 1$ and I = S(I).
- (2) Let diam $(Reg(\Gamma(R/I))) = 1$. Then diam $(\overline{S}(\Gamma_I(R))) = 1$ if $I \subsetneq S(I)$ and diam $(\overline{S}(\Gamma_I(R))) = 2$ if I = S(I).
 - (3) If diam $(Reg(\Gamma(R/I))) = 2$, then diam $(\overline{S}(\Gamma_I(R))) = 2$.
 - (4) $\operatorname{diam}(\overline{S}(\Gamma_I(R))) = \infty$ if and only if $\operatorname{diam}(\operatorname{Reg}(\Gamma(R/I))) = \infty$.

Proof. These results all follow directly from Remark 3.10, Theorem 3.12 and [2, Theorem 2.6(1)]. Note that for (4), $\operatorname{diam}(\overline{S}(\Gamma_I(R))) = \infty$ if and only if $2 \in S(I)$ and $|R/S(I)| = \beta \geq 3$, or $2 \notin S(I)$ and $|R/S(I)| = \beta \geq 5$. So, by Note 2.1 and [2, Theorem 2.2], the proof is complete.

Corollary 3.14. Let S(I) be an ideal of R and $I \subsetneq S(I)$. If $\operatorname{diam}(\overline{S}(\Gamma_I(R))) = k$ such that $0 \le k \le 2$ is an integer, then $\operatorname{diam}(\operatorname{Reg}(\Gamma(R/I))) = k$.

Proof. The result follows by Remark 3.10, Theorem 3.12 and [2, Theorem 2.6(1)].

Theorem 3.15. Suppose that S(I) is an ideal of R. Then

- (1) (a) $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3$ if and only if $2 \in S(I)$ and $|S(I)| \geq 3$.
 - (b) $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 4$ if and only if $2 \notin S(I)$ and $|S(I)| \geq 2$.
 - (c) Otherwise, $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = \infty$.
- (2) (a) $\operatorname{gr}(T(\Gamma_I(R))) = 3$ if and only if $|S(I)| \geq 3$.
 - (b) $\operatorname{gr}(T(\Gamma_I(R))) = 4$ if and only if $2 \notin S(I)$ and |S(I)| = 2.
 - (c) Otherwise, $gr(T(\Gamma_I(R))) = \infty$.

Proof. According to Theorem 3.1, Theorem 3.5, these results follow. \Box

Corollary 3.16. Let S(I) be an ideal of R. Then

- (1) (a) If $gr(Reg(\Gamma(R/I))) = k$ such that $3 \le k \le 4$ is an integer, then $gr(\overline{S}(\Gamma_I(R))) = k$.
 - (b) If $\{0\} \neq I \subsetneq S(I)$ and $\operatorname{gr}(\operatorname{Reg}(\Gamma(R/I))) = \infty$, then $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3$.
- (2) (a) If $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3$, then if $|Z(R/I)| \leq 2$, $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = \infty$. If |Z(R/I)| > 2, then $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3$.
 - (b) If $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 4$, then $\operatorname{gr}(\operatorname{Reg}(\Gamma(R/I))) = 4$, if $I \subsetneq S(I)$; otherwise $\operatorname{gr}(\operatorname{Reg}(\Gamma(R/I))) = \infty$.
 - (c) If $\operatorname{gr}(S(\Gamma_I(R))) = \infty$, then $\operatorname{gr}(Reg(\Gamma(R/I))) = \infty$.

Proof. These results all follow directly from Note 2.1, Remark 3.10, and Theorem 3.15 and [2, Theorem 2.6(2)].

4. The case when S(I) is not an ideal R

Given a proper ideal I of R, in this section we study the remaining case when S(I) is not an ideal of R (i.e., I is not primal ideal of R). Since S(I) is always

closed under product by elements of R; hence there are distinct $x, y \in S(I)^*$ such that $x + y \in R - S(I)$, so $|S(I)| \ge 3$; in this case, $S(\Gamma_I(R))$ and $\overline{S}(\Gamma_I(R))$ are never disjoint subgraphs. Also, we determine when $T(\Gamma_I(R))$ is connected and compute diam $(T(\Gamma_I(R)))$.

Theorem 4.1. Suppose that S(I) is not an ideal of R.

- (1) $S(\Gamma_I(R))$ is connected with $diam(S(\Gamma_I(R))) = 2$.
- (2) Some vertex of $S(\Gamma_I(R))$ is adjacent to a vertex of $\overline{S}(\Gamma_I(S))$. In particular, the subgraphs $S(\Gamma_I(R))$ and $\overline{S}(\Gamma_I(S))$ are not disjoint.
- (3) If $\overline{S}(\Gamma_I(S))$ is connected, then $T(\Gamma_I(S))$ is connected.
- *Proof.* (1) Let $x \in S(I)^*$. Then x is adjacent to 0. Thus x 0 y is a path in $S(\Gamma_I(R))$ of length two between any two distinct $x, y \in S(I)^*$. Moreover, there exist nonadjacent $x, y \in S(I)^*$ since S(I) is not an ideal of R; thus $\operatorname{diam}(S(\Gamma_I(R))) = 2$.
- (2) By assumption, there exist distinct $x, y \in S(I)^*$ such that $x + y \notin S(I)^*$; so $x + y \in R S(I)$. Then $-x \in S(I)$ and $x + y \in R S(I)$ are adjacent vertices in $T(\Gamma_I(R))$ since $-x + (x + y) = y \in S(I)$. The "in particular" statement is clear.
- (3) By part (1) above, it suffices to show that there is a path from x to y in $T(\Gamma_I(R))$ for any $x \in S(I)$ and $y \in R S(I)$. By part (2) above, there exist adjacent vertices u and v in $S(\Gamma_I(R))$ and $\overline{S}(\Gamma_I(R))$, respectively. Since $S(\Gamma_I(R))$ is connected, there is a path from x to u in $S(\Gamma_I(R))$; and since is a path from x to y in $\overline{S}(\Gamma_I(R))$. Then there is a path from x to y in $T(\Gamma_I(R))$ since y and y are adjacent in $T(\Gamma_I(R))$. It follows that, $T(\Gamma_I(R))$ is connected.

The Jacobson radical Jac(R) of R is defined to be the intersection of all the maximal ideal of R, [4, Proposition 1.9]. Consider the following lemma.

Lemma 4.2. Suppose that S(I) is not an ideal of R. Then $T(\Gamma_I(R))$ is connected if and only if $R = \langle a_1, \ldots, a_k \rangle$ for some $a_1, \ldots, a_k \in S(I)$. In particular, if R/I is a finite ring and $I \subseteq Jac(R)$, then $T(\Gamma_I(R))$ is connected.

Proof. Suppose $T(\Gamma_I(R))$ is connected. Hence there is a path $0-x_1-\cdots-x_n-1$ from 0 to 1 in $T(\Gamma_I(R))$. Now $x_1,x_1+x_2,\ldots,x_n+1\in S(I)$. Hence $1\in \langle x_1,x_1+x_2,\ldots,x_{n-1}+x_n,x_n+1\rangle\subseteq \langle S(I)\rangle$; thus $R=\langle S(I)\rangle$. Conversely, suppose that $R=\langle S(I)\rangle$. We show that for each $0\neq x\in R$, there exists a path in $T(\Gamma_I(R))$ from 0 to x. By assumption, there are elements $z_1,\ldots,z_n\in S(I)$ such that $x=z_1+\cdots+z_n$. Set $w_0=0$ and $w_k=(-1)^{n+k}(z_1+\cdots+z_k)$ for each integer k with $1\leq k\leq n$. Then $w_k+w_{k+1}=(-1)^{n+k+1}z_{k+1}\in S(I)$ for each integer k with $0\leq k\leq n-1$; and thus $0-w_1-w_2-\cdots-w_{n-1}-w_n=x$ is a path from 0 to x in $T(\Gamma_I(R))$ of length at most x. Now let x in x

In the light of Lemma 4.2, we have the following results.

Theorem 4.3. Suppose that S(I) is not an ideal of R and $R = \langle S(I) \rangle$. Let $n \geq 2$ be the least integer such that $R = \langle x_1, \ldots, x_n \rangle$ for some $x_1, \ldots, x_n \in S(I)$ (that is, $T(\Gamma_I(R))$ is connected). Then $\operatorname{diam}(T(\Gamma_I(R))) = n$. In particular, if R/I is a finite ring and $I \subseteq Jac(R)$, then $\operatorname{diam}(T(\Gamma_I(R))) = 2$.

Proof. First, we investigate any path from 0 to 1 in $T(\Gamma_I(R))$ has length $\geq n$. Suppose that $0-x_1-x_2-\cdots-x_{m-1}-1$ is a path from 0 to 1 in $T(\Gamma_I(R))$ of length m. Thus $x_1,x_1+x_2,\ldots,x_{m-2}+x_{m-1},x_{m-1}+1\in S(I)$, and hence $1\in (x_1,x_1+x_2,\ldots,x_{m-2}+x_{m-1},x_{m-1}+1)\subseteq (S(I))$. Thus $m\geq n$.

Now, let x and y be distinct elements in R. We show that there is a path from x to y in $T(\Gamma_I(R))$ with length $\leq n$. Let $1=b_1+\cdots+b_n$ for some $b_1,\ldots,b_n\in S(I)$, and let $z=y+(-1)^{n+1}x$. Define $w_0=x$ and $w_k=(-1)^{n+k}z(b_1+\cdots+b_k)+(-1)^kx$ for each integer k with $1\leq k\leq n$. Then $w_k+w_{k+1}=(-1)^{n+k+1}zb_{k+1}\in S(I)$ for each integer k with $0\leq k\leq n-1$ and $w_n=z+(-1)^nx=y$. Thus $x-w_1-\cdots-w_{n-1}-y$ is a path from x to y in $T(\Gamma_I(R))$ with length at most n. Specially, we conclude that a shortest path between 0 and 1 in $T(\Gamma_I(R))$ has length n; hence diam $(T(\Gamma_I(R)))=n$. For the "in particular" statement, note that Z(R/I) is not an ideal of R. So, $x+y+I\in Reg(R/I)$ for some $x,y\in S(I)$. Since every regular element of a finite commutative ring is a unit and $I\subseteq Jac(R)$; hence x+y is a unit. Now, we have $R=\langle x,y\rangle$, and thus $\dim(T(\Gamma_I(R)))=2$.

Clearly, if $R = \langle a_1, \ldots, a_k \rangle$ for some $a_1, \ldots, a_k \in S(I)$, then $R/I = \langle a_1 + I, \ldots, a_k + I \rangle$; hence $\operatorname{diam}(T(\Gamma(R/I))) \leq \operatorname{diam}(T(\Gamma_I(R)))$ (see [2, Theorem 3.4]). Note that since, $k \geq 2$ be the least integer such that $R = \langle a_1, \ldots, a_k \rangle$; hence $\operatorname{diam}(T(\Gamma(R/I))) \geq \operatorname{diam}(T(\Gamma_I(R))) - 1$.

Example 4.4. Let $n \geq 2$ be an integer, and let $n \neq p^k$ for every prime p and integer $k \geq 1$. Then $S(\langle n \rangle)$ is not an ideal of \mathbb{Z} (see, Example 3.7). It is easy to check that there are distinct primes p and q, and integers $r, s \notin \langle n \rangle$ such that $pr \in \langle n \rangle$ and $qs \in \langle n \rangle$. So $\mathbb{Z} = \langle p, q \rangle$; that $p, q \in S(\langle n \rangle)$. By Theorem 4.3, $\operatorname{diam}(T(\Gamma_{\langle n \rangle}(\mathbb{Z}))) = 2$.

Theorem 4.5. Suppose that S(I) is not an ideal of R. If $T(\Gamma_I(R))$ is connected, then

- (1) diam $(T(\Gamma_I(R))) = d(0,1)$.
- (2) If diam $(T(\Gamma_I(R))) = n$, then diam $(\overline{S}(\Gamma_I(R))) \ge n 2$.

Proof. (1) This follows from the proof of Theorem 4.3.

(2) By part (1) above, $\operatorname{diam}(T(\Gamma_I(R))) = d(0,1) = n$. Let $0 - x_1 - \cdots - x_{n-1} - 1$ be a shortest path from 0 to 1 in $T(\Gamma_I(R))$. Clearly, $x_1 \in S(I)$. If $x_i \in S(I)$ for some integer i with $1 \leq i \leq n-1$, then we can construct the path $1 \leq i \leq n-1$, which has length less than $1 \leq i \leq n-1$, which is a contradiction. Thus $1 \leq i \leq n-1$ for each integer $1 \leq i \leq n-1$.

 $2 \le i \le n-1$. Therefore, $x_2 - x_3 - \cdots - x_{n-1} - 1$ is a shortest path from x_2 to 1 in $\overline{S}(\Gamma_I(R))$, and it has length n-2. Thus diam $(\overline{S}(\Gamma_I(R))) \ge n-2$. \square

Corollary 4.6. Let $\{R_{\alpha}\}_{{\alpha}\in\Lambda}$ be a family of commutative rings with $|\Lambda| \geq 2$, and let $R = \prod_{{\alpha}\in\Lambda} R_{\alpha}$. Suppose $I = \prod_{{\alpha}\in\Lambda} I_{\alpha}$; such that for every ${\alpha}\in\Lambda$, I_{α} is a proper ideal of R_{α} . Then $T(\Gamma_I(R))$ is connected with $\operatorname{diam}(T(\Gamma_I(R))) = 2$.

Proof. It is easy to check that e = (1, 0, 0, ...) and $1_R - e \in S(I)$. It follows that $R = \langle e, 1_R - e \rangle$; so by Theorem 4.3, the claim is true.

Remark 4.7. Let R and U be commutative rings, I and J be proper ideals of R and U, respectively. It is clear to check that $R \times U - S(I \times J) = (R - S(I)) \times (U - S(J))$. So for distinct $(x,y),(z,w) \in R \times U - S(I \times J), (x,y) - (-x,-w) - (z,w)$ is a path of length at most two in $\overline{S}(\Gamma_{I \times J}(R \times U))$. Thus $\overline{S}(\Gamma_{I \times J}(R \times U))$ is connected with diam $(\overline{S}(\Gamma_{I \times J}(R \times U))) \le 2$. By Theorem 4.1(2), it follows that $T(\Gamma_{I \times J}(R \times U))$ is connected (see Corollary 4.6).

Theorem 4.8. Let S(I) does not an ideal of R. Then $T(\Gamma_{S^{-1}I}(S^{-1}R))$; where S = R - S(I), is connected with $\operatorname{diam}(T(\Gamma_{S^{-1}I}(S^{-1}R))) = 2$. In particular, if R/I is a finite ring and $I \subseteq Jac(R)$, then $\operatorname{diam}(T(\Gamma_{S^{-1}I}(S^{-1}R))) = 2$.

Proof. Since S(I) is not an ideal of R, there are $x_1, x_2 \in S(I)$ such that $s = x_1 + x_2 \in R - S(I)$. Thus $x_1/s + x_2/s = 1$ in $S^{-1}R$. It is easy to check that $S(S^{-1}I)$ is not an ideal of $S^{-1}R$ and $x_1/s, x_2/s \in S(S^{-1}I)$. Thus $S^{-1}R = \langle x_1/s, x_2/s \rangle$. The "in particular" statement is clear since every $s \in S$ is unite $(s + I \in Reg(R/I)$; hence s + I is unite). It follows that $S^{-1}R = R$.

Theorem 4.9. Let $I \subseteq R$, and P_1 and P_2 be prime ideals of R, containing I. Suppose $xy \in I$ for some $x \in P_1 \setminus P_2$ and $y \in P_2 \setminus P_1$. Then $\operatorname{diam}(T(\Gamma_{S^{-1}I}(R_S))) = 2$ where $S = R \setminus P_1 \cup P_2$.

Proof. For all $s \in S$, we have sx and $sy \notin I$; since $s, x \notin P_2$ and $s, y \notin P_1$. Thus x/s and y/s are nonzero elements of $S(S^{-1}I)$ $((x/s)(y/1) \in S^{-1}I$ and $y/1 \notin S^{-1}I$). Let $s = x + y \in S$, hence $S^{-1}R = \langle x/s, y/s \rangle$. Thus $T(\Gamma_{S^{-1}I}(S^{-1}R))$ is connected with diam $(T(\Gamma_{S^{-1}I}(S^{-1}R))) = 2$ by Theorem 4.3.

The following theorem give $\operatorname{gr}(S(\Gamma_I(R)))$, $\operatorname{gr}(\overline{S}(\Gamma_I(R)))$, and $\operatorname{gr}(T(\Gamma_I(R)))$ when S(I) is not an ideal of R.

Theorem 4.10. Let R be a commutative ring with the proper ideal I such that S(I) is not an ideal of R. Then

- (1) If $I \neq \{0\}$, $\operatorname{gr}(S(\Gamma_I(R))) = 3$. Otherwise $\operatorname{gr}(S(\Gamma_I(R))) = 3$ or ∞ . Moreover, if $\operatorname{gr}(S(\Gamma_I(R))) = \infty$, then $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$; so, $S(\Gamma_I(R))$ is a $K^{1,2}$ star graph with center 0.
 - (2) $\operatorname{gr}(T(\Gamma_I(R))) = 3$ if and only if $\operatorname{gr}(S(\Gamma_I(R))) = 3$.
- (3) The (induced) subgraph of $S(\Gamma_I(R))$ with vertices \sqrt{I} is complete; hence $gr(S(\Gamma_I(R))) = 3$ when $|\sqrt{I}| \geq 3$.
 - (4) If $\operatorname{gr}(T(\Gamma_I(R))) = 4$, then $\operatorname{gr}(S(\Gamma_I(R))) = \infty$.

- (5) If $2 \in I$, then $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3$ or ∞ .
- (6) If $2 \notin I$, then $\operatorname{gr}(\overline{S}(\Gamma_I(R))) = 3, 4$ or ∞ .
- *Proof.* (1) Let $0 \neq x \in I$ and $y \in S(I) \setminus I$. Since $I + S(I) \subseteq S(I)$, 0 x y 0 is a 3-cycle in $S(\Gamma_I(R))$. If $I = \{0\}$, it follows from [2, Theorem 3.4(1)]. Note that if $R \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, then $I = \{0\}$ is the only proper ideal of R, that S(I) is not an ideal of R.
- (2) It suffices to show that $\operatorname{gr}(S(\Gamma_I(R)))=3$ when $\operatorname{gr}(T(\Gamma_I(R)))=3$. If $2x\neq 0$ for some $x\in S(I)^*$, then 0-x-(-x)=0 is a 3-cycle in S(I). Thus we may assume that 2x=0 for all $x\in S(I)$. Since S(I) is not an ideal; so there are $x\in S(I)$ such that $x\notin I$. $2x=0\in I$; hence $2\in S(I)$. Let a-b-c-a be a 3-cycle in $S(\Gamma_I(R))$. So $a+b,b+c,c+a\in S(I)$. If 2a=0, then 0-a+b-a+c-0 is a 3-cycle in $S(\Gamma_I(R))$. So without loss of generality we can assume that 2a,2b and 2c are non-zero. If $2a\neq 2b$, then 0-2a-2b-0 is a 3-cycle in $S(\Gamma_I(R))$. Without loss of generality we can assume that 2a=2b=2c. So, $2(a-b)=2(b-c)=0\in I$. If $2\notin I$, then a-b and $b-c\in S(I)$; hence 0-(a-b)-(b-c)=0 is a 3-cycle in $S(\Gamma_I(R))$ (if a-b=b-c, then a+c=2b=2a, a contradiction). Let $2\in I$. Since $b+c\in S(I)$; hence $(b+c)r\in I$ such that $r\notin I$; thus $(2a+b+c)r\in I$. Now 0-a+b-a+c-0 is a 3-cycle in $S(\Gamma_I(R))$ (if a+b=0, then we have a 3-cycle 0-a+c-b+c-0). Thus in all cases we get a 3-cycle in $S(\Gamma_I(R))$.
 - (3) It follows from $\sqrt{I} \subseteq S(I)$ is an ideal.
 - (4) It is clear by parts 1, 2.
- (5) Let $2 \in I$ and $\overline{S}(\Gamma_I(R))$ contains a cycle C. Hence there is a path x-y-z in $\overline{S}(\Gamma_I(R))$. Without loss of generality we may assume that $x \neq 1$, $y \neq 1$. Clearly, $x+y,y+z \in S(I)$. Suppose that R contains a $a \in \sqrt{I} \setminus I$. If a=ax=ay, then x+1, $y+1 \in S(I)$, and thus 1-x-y-1 is a 3-cycle in $\overline{S}(\Gamma_I(R))$. If either $ax \neq a$ or $ay \neq a$, then either 1-(a+1)-(ax+1)-1 or 1-(a+1)-(ay+1)-1 is a 3-cycle in $\overline{S}(\Gamma_I(R))$ ($a+I \in Jac(R/I)$). Let $\sqrt{I}=I$. If $I=\{0\}$ (hence 2=0), then $x^2 \neq y^2$; since $x^2+y^2=(x+y)^2 \neq 0$. Hence $x^2-xy-y^2-x^2$ is a 3-cycle in $\overline{S}(\Gamma_I(R))=Reg(R)$. Finally, let $I\neq\{0\}$. Suppose $0\neq b\in I$. If $x+z\in S(I)$, then x-y-z-x is a 3-cycle in $\overline{S}(\Gamma_I(R))$. Let $x+z\notin S(I)$. It follows that y-x or $z-y\notin I$ ($2x\in I$). Without loss of generality we can assume that $y-x\notin I$; hence b+x-x-y-b+x is a 3-cycle in $\overline{S}(\Gamma_I(R))$. So, as required.
- (6) Suppose that $\overline{S}(\Gamma_I(R))$ contains a cycle. So there is a path x-y-z in $\overline{S}(\Gamma_I(R))$. We may assume that $x+z\notin S(I)$. It is clear that either $x+y\neq 0$ or $y+z\neq 0$ (otherwise x=z, a contradiction). Without loss of generality we can assume that $x+y\neq 0$. Then x-y-(-y)-(-x)-x is a 4-cycle (if x=-x gives $2x=0\in I$, then $x\in S(I)$, a contradiction). So, the proof is complete.

References

- [1] S. Akbari, D. Kiani, F. Mohammadi, and S. Moradi, *The total graph and regular graph of a commutative ring*, J. Pure Appl. Algebra **213** (2009), no. 12, 2224–2228.
- [2] D. F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706–2719.
- [3] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434–447.
- [4] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Readig, MA, 1969.
- [5] B. Bollobás, Graph Theory: An Introduction Course, Springer-Verlag, New York, 1979.
- [6] A. Yousefian Darani, Primal and weakly primal submodules and related results, Ph. D. thesis, University of Guilan, Iran, 2008.
- [7] L. Fuchs, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.
- [8] S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra 31 (2003), no. 9, 4425–4443.

Ahmad Abbasi

DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF GUILAN P. O. BOX 41335-19141, RASHT, IRAN

P. O. Box 41335-19141, RASHT, IRAN E-mail address: aabbasi@guilan.ac.ir

SHOKOOFE HABIBI DEPARTMENT OF PURE MATHEMATICS FACULTY OF MATHEMATICAL SCIENCES UNIVERSITY OF GUILAN P. O. BOX 41335-19141, RASHT, IRAN